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Abstract
Historically tools and technologies facilitated scientific discoveries. Steroid hormone research is not an exception.
Unfortunately, the dramatic advancement of the field faded this research area and flagged it as a solved topic. However, it
should have been the opposite. The area should glitter with its strong foundation and attract next-generation scientists. Over
the past century, a myriad of new facts on biochemistry, molecular biology, cell biology, physiology and pathology of the
steroid hormones was discovered. Several innovations were made and translated into life-saving treatment strategies such as
synthetic steroids, and inhibitors of steroidogenesis and steroid signaling. Steroid molecules exhibit their diverse effects on
cell metabolism, salt and water balance, development and function of the reproductive system, pregnancy, and immune-cell
function. Despite vigorous research, the molecular basis of the immunomodulatory effect of steroids is still mysterious. The
recent excitement on local extra-glandular steroidogenesis in regulating inflammation and immunity is revitalizing the topic
with a new perspective. Therefore, here we review the role of steroidogenesis in regulating inflammation and immunity,
discuss the unresolved questions, and how this area can bring another golden age of steroid hormone research with the
development of new tools and technologies and advancement of the scientific methods.

Introduction

Cell biology and microbiology initiated in the seventeenth
century with the discovery of cells and microorganisms by
Robert Hooke and Antonie van Leeuwenhoek. This whole new
world of life science was originated because of the technolo-
gical innovations and development of practical vision-
enhancing tools (e.g., optical lenses and microscopes) based
on the refractive properties of glass. Similar examples are
countless. Great discoveries in science originated with the
advancement of tools and technologies, allowing scientists to
look into the problem from diverse angles. This was not
indifferent to the field of steroid hormone research. Ster-
oidogenesis is a biosynthetic process by which cholesterol is
converted into steroids (Fig. 1) [1]. Steroid hormones are
synthesized mainly in the adrenal gland, gonads, and placenta

under the control of the hypothalamus–pituitary–steroidogenic
gland (i.e., adrenal, gonads, and placenta) axis (Fig. 2). Ster-
oidogenesis in the other tissues, known as extra-glandular
steroidogenesis (alternatively known as local steroidogenesis),
in brain [2, 3], skin [4, 5], thymus [6], adipose tissues [7, 8],
mucosa [9, 10] has also been reported. Interestingly, the exis-
tence of the steroidogenic immune cells, pinpointing the exis-
tence of an endogenous steroid-regulatory circuit within the
immune system brought new excitement in the field (Fig. 2)
[11–17]. Nevertheless, the physiological and pathological role
of extra-glandular steroidogenesis remains largely unknown
[18, 19]. Altogether, an important area of biology was flour-
ished, then was temporarily neglected, but revitalizing in recent
years. Here we reviewed the important discoveries of ster-
oidogenesis and steroid regulation of immune-cell function. We
raised the unanswered questions in the field and discussed new
perspectives regarding how these hurdles can be overcome
with the help of recent technical advancements.

The biochemistry of steroidogenesis

The process of steroidogenesis initiates with the conver-
sion of cholesterol to pregnenolone by cholesterol
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Fig. 1 Overview of the steroid
biosynthesis pathway.

Fig. 2 Crosstalk between
steroid endocrine system and
immune system.
Hypothalamus–pituitary–adren-
enal/gonad/placenta axes
regulate glandular
steroidogenesis. Endocrine
gland-secreted steroid hormones
regulate immune-cell function.
Interestingly, immune cells by
themselves can synthesize
steroids locally to control their
own function in an autocrine and
paracrine manner. A crosstalk
between endocrine system and
immune system exists via
secretory signaling molecules.
The topic needs to be revisited
and further studied with modern
tools and technologies. (Figure
created with BioRender.com).
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side-chain cleavage enzyme cytochrome P450scc (also
known as CYP11A1, encoded by CYP11A1 gene) within
the mitochondria. Steroidogenic acute regulatory protein
(StAR) facilitates the transport of cholesterol within the
mitochondria [20]. Pregnenolone is then catalyzed into
other steroids by a series of oxidative enzymes located in
both mitochondria and endoplasmic reticulum (Fig. 1).
The accessibility of these enzymes in a given tissue
determines the resultant functional steroids in a given
gland or tissue. The two crucial regulatory steps in this
process are the transport of free cholesterol from the
cytoplasm into mitochondria and conversion of choles-
terol into pregnenolone. The precursor, cholesterol, comes
from the cholesterol pool that are synthesized within the
cell from acetate, from cholesterol ester stored in intra-
cellular lipid droplets and from uptake of cholesterol-
containing low-density lipoproteins. In chronically sti-
mulated steroidogenic cells, plasma-borne cholesterol is
the most important source. Cytochrome P450 (CYP) and
hydroxysteroid dehydrogenase (HSD) are the two major
classes of enzymes, which catalyzes the reactions leading
to steroid biosynthesis. Typically, steroid hormones are
classified into five groups: glucocorticoids, miner-
alocorticoids, androgens, estrogens, and progestogens.
Cortisol is the major representative of glucocorticoids in
mammals including humans. In rodents, it is corticoster-
one. Adrenal gland is the major source of glucocorticoids
and mineralocorticoids. Glucocorticoids controls cell
metabolism and immune-cell function. Mineralocorticoids
maintain salt and water balance. Aldosterone is the most
prominent mineralocorticoids. Androgens (e.g., testoster-
one), estrogens (e.g., estradiol and estrone), progestogens
(also known as progestins) such as progesterone are
synthesized by the gonads and placenta. These sex hor-
mones control normal reproductive function. The bio-
synthetic pathways for major representatives of these
classes of steroid hormones are illustrated in Fig. 1. It
should be noted that a variety of related molecules (i.e.,
steroid derivatives) exist, some of which may have sig-
nificant effects, but we are not discussing in this review.
Pregnenolone acts as a precursor for all steroid hormones.
17α-hydroxylase hydroxylates pregnenolone and convert
it to 17α-hydroxy pregnenolone. 3β-HSD oxidizes preg-
nenolone and forms progesterone, which is further
hydroxylated by 21-hydroxylase and forms deoxy-
corticosterone. All mineralocorticoids are synthesized
from deoxy-corticosterone. 17α-hydroxyprogesterone is
produced from progesterone or from 17α-hydroxy preg-
nenolone. 21-hydroxylase converts 17α hydro-
xyprogesterone to 11-deoxycortisol from where
glucocorticoids (e.g., cortisol) are synthesized. 17, 20
lyase acts on both 17α-hydroxy pregnenolone and 17α-
hydroxyprogesterone and forms dehydroepiandrosterone

and androstenedione, respectively, which act as pre-
cursors for testosterone and estrogen biosynthesis.

Steroidogenesis and steroid signaling within
the immune system

Immune cells are proficient in synthesizing and metabo-
lizing sex steroids actively [17]. Human alveolar mac-
rophages convert androstenedione to potent androgens by
catalytic activity of steroidogenic enzymes 5α-reductase,
17β-hydroxysteroid dehydrogenase (17β-HSD), 3β-HSD,
and 3α-HSD. These intracellularly formed potent andro-
gens possibly regulate the phagocytic activity of the
alveolar macrophages [21]. Synovial macrophages
express functional androgen receptors in both male and
female. They are capable of metabolizing testosterone to
active dihydrotestosterone [22]. Monocyte-derived mac-
rophages preferentially produce a physiologically perti-
nent amount of androstenedione, testosterone,
3β,17β-androstenediol, 3β,16α,17β-androstenetriol, and
estrogens depending on the maturation stage of macro-
phage and influence of local factors such as the presence
of lipopolysaccharide (LPS) [23]. Monocyte and mono-
cyte cell line THP-1 cells need to be differentiated to
macrophages to produce immune reactive aromatase
enzyme that catalyzes the conversion of androgens to
estrogens. Dexamethasone (synthetic glucocorticoid)
treated THP-1 cells exhibit upregulated activity of aro-
matase and also upregulation of CYP19A1 gene tran-
scripts [24]. Nevertheless, macrophages are able to
produce estrogens, which are potent local immunomo-
dulators [25]. Androgens exhibit immunosuppressive
effects, whereas estrogens have both pro- and anti-
inflammatory effects depending on cell type, micro-
environment, and quantity of estrogen [26]. Expression
and activity of steroidogenic enzymes including 3β-HSD
and 17β-HSD, 5α-reductase, aromatase have been deter-
mined in male and proestrus female mice splenic T
lymphocytes after trauma-hemorrhage [27]. The study
shows the involvement of intracrine sex steroid synthesis
in gender dimorphic immune responses. All these ster-
oidogenic enzymes have been found in splenic T cells.
5α-reductase activity increased in male T cells, whereas
aromatase activity increased in female T lymphocytes.
Increased 5α-reductase activity in male was immuno-
suppressive, whereas increased aromatase activity in
females was immunoprotective. The immunoprotection
of proestrous females enhanced reductase activity of the
17β-HSD [27]. The expression of cholesterol transporting
StAR protein has been detected in mouse macrophages,
which is influenced by inflammatory cytokines (tumor
necrosis factor (TNF-α), IFN-γ, and TGF-β1) [28].
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All these above-mentioned evidences show the ability of
immune cells to convert steroids locally to another steroid.
However, peripheral immune-cell-mediated steroidogenesis in
true sense (also known as de novo steroidogenesis), by defi-
nition which starts with the conversion of the cholesterol into
pregnenolone, was unknown until recently. In type 2 immune
responses such as parasitic worm infection and Th2-infiltrated
tumor microenvironment can induce de novo steroid bio-
synthesis in T lymphocytes, particularly in T helper 2 cells
[11, 12]. In these studies, it has been proposed that type 2
immune responses elicit immune-cell steroidogenesis to
resolve raised immunity and that is maladapted in solid
tumors. The nature of immune-cell steroidogenesis can be
context-dependent. In peanut allergy and lung airway inflam-
mation, T-cell steroidogenesis plays a proallergic role [13–15].
Apart from T cells, macrophages can be steroidogenic in solid
tumors, as is evidenced in colorectal cancer [16]. Immune-cell-
mediated steroidogenesis is appearing to be conserved in

human [15]. However, why type 2 immune responses evolved
local immune-cell steroidogenesis, and steroid signaling is of
immense importance and warrant further studies.

Steroid regulation of macrophage function

Macrophages are phagocytic cells that originate from blood
monocytes that leave the circulation to differentiate in dif-
ferent tissues. They are responsible for detecting, engulfing,
and destroying pathogens and apoptotic cells, and occa-
sionally can act as antigen-presenting cells (APCs). Steroids
have miscellaneous effects on the survival and phagocytic
activity of macrophages (Fig. 3). Glucocorticoids are known
to impede the expansion of inflammation by suppressing
pro-inflammatory macrophages as well as inducing anti-
inflammatory monocyte and macrophage. Glucocorticoids
penetrate the plasma membrane and bound to the

Fig. 3 Effect of glucocorticoids (GC) on monocyte/macrophages. A
GCs penetrate the plasma membrane and bound to the glucocorticoid
receptor (GR) in the cytoplasm. The GC/GR complex is then trans-
ported to the nucleus and exert its effect by binding positive gluco-
corticoid response element (pGRE) or negative glucocorticoid
response element (nGRE) and upregulate or downregulate the corre-
sponding genes, respectively. Upregulated expression of IκBα impedes
the effect of NF-κB. The signaling pathway through membrane-bound

glucocorticoid receptor (mGR) is still unexplored. B GCs play con-
trasting roles on monocytes/macrophages in a context-dependent
manner, depending upon their level and time of exposure. High level
of GC is anti-inflammatory and immunosuppressive, while a low level
of GC facilitates macrophage polarization into pro-inflammatory
phenotypes. All these phenomena are also influenced by cytokines
present in the milieu. (Figure created with BioRender.com).
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glucocorticoid receptor (GR) in the cytoplasm. The
glucocorticoid-GR complex then transported to the nucleus
after removing the bound chaperone with GR. The
glucocorticoid-GR complex can activate or repress the
transcription of glucocorticoid responsive genes by binding
with positive or negative glucocorticoid response elements.
The liganded GR prevents the transcriptional activity of NF-
κB and activator protein-1 (AP-1), which are key regulators
of inflammatory response genes [29–31]. NF-κB and AP-1
may also hinder in transcriptional activation of GR. The
temporal regulation of these processes in different types of
tissue-resident macrophages is still unclear. Membrane-
bound glucocorticoid receptors (mGR) have also been
reported. Systemic lupus erythematosus patients exhibit
considerably higher frequencies of mGR+CD14+ mono-
cytes in peripheral blood, which can be downregulated by
glucocorticoid treatment [32]. However, the cellular sig-
naling through mGR is yet to be explored further in detail
[33]. The lifespan of monocytes is relatively short. In the
absence of any external signals, they undergo apoptosis
[34]. Glucocorticoids protect anti-inflammatory monocyte/
macrophages from apoptosis by specifically activating A3
adenosine receptor (A3AR) or its downstream signaling.
Activation of the Raf/MEK/ERK/p90RSK pathway induces
antiapoptotic effects by inhibiting caspase activity or via
expressing c-Myc-dependent antiapoptotic genes, and
thereby suppress inflammation [35]. Glucocorticoid-treated
isolated murine macrophages are incapable of synthesizing
TNF-α, which are well-known endogenous mediator for
septic shock. Interferon-gamma (IFN-γ) can overcome this
inhibitory effect [36]. Based on the secreted cytokines,
macrophages can be classified as classically activated pro-
inflammatory or M1 macrophages and alternatively acti-
vated anti-inflammatory or M2 macrophages [37]. Gluco-
corticoids induce differentiation of M2c macrophages
[38, 39], and stimulate the survival of anti-inflammatory
macrophages by upregulating and activating A3AR as an
initial trigger of antiapoptotic pathway [35]. Glucocorti-
coids inhibit LPS/IFN-γ-induced activation (classical acti-
vation) of macrophages [40] but the effect of
glucocorticoids on alternatively activated macrophages
(immune complexes, adenosine receptor ligands, IL-4/IL-13
activated) and the underlying molecular mechanism is still
unknown. Macrophages can convert inactive 11-
dehydrocorticosterone (11-DHC) to active endogenous
glucocorticoid by 11b-hydroxysteroid dehydrogenase-1
(11β-HSD1). The expression of HSD11b1 gene (encoding
11β-HSD1) is induced upon differentiation of monocyte to
macrophages. Endogenous glucocorticoid is responsible for
augmented phagocytotic activity of macrophages [41]. The
action and regulation of this enzyme in acute inflammatory
responses are yet to be explored. Macrophages destroy
phagocytized microbes by producing reactive oxygen

species (like nitric oxide). Corticosterone with low con-
centration level (10−10

M) shows immune-stimulatory
effects by promoting the expression of pro-inflammatory
cytokines and enhancing nitric oxide (NO) production in
macrophages, this assists the infected organism to chal-
lenge; whereas corticosterone is immunosuppressive at
higher concentration (10−6

M) and alters macrophage
functions and protect the organism from exaggerated and
harmful immune responses [42]. Glucocorticoids upregulate
the expression of hemoglobin–haptoglobin scavenger
receptor CD163 [43], enhance the activity of macrophages
to phagocytose protein opsonized neutrophil through pro-
tein S/Mer tyrosine kinase-dependent pathway [44]. Glu-
cocorticoids augment short term as well as prolonged
phagocytosis of apoptotic cells. Short-term phagocytosis
activity is enhanced by the upregulated expression of
MERTK and C1q. Prolonged phagocytosis is enhanced via
the induction of liver X receptors, peroxisome proliferator-
activated receptors-δ, and uncoupling protein 2 (UCP2)
[45]. It would be interesting to know the involvement of
local steroidogenesis, particularly monocyte/macrophage-
mediated steroidogenesis and steroid production, on mac-
rophage function.

Steroid regulation of natural killer (NK) cell
function

NK cells are group I innate lymphoid cells. They can dis-
criminate and destroy virus-infected cells or tumor cells
based on MHC-I recognition. Specialized NK cells also play
important roles in pregnancy. Glucocorticoids dysregulate
NK cell function epigenetically [46]. They reduce the
expression of IL-6, TNF-α, IFN-γ, granzyme B, and LFA-1.
Reduced expression of integrin LFA-1 on the surface of NK
cells results in decreased adhesion to the target cells [46].
Synthetic corticosteroids methylprednisolone treatment
causes reduction of natural cytotoxicity receptors including
NKp46, NKp30 and inhibits the expression of IL-2-
inducible NKp44 receptor. Methylprednisolone-treated nor-
mal NK cells exhibit a reduced level of intra-cytoplasmic
perforin, granzyme A and B [47]. Estrogen inhibits NK cell
cytotoxicity, possibly through estrogen receptor (ER)-β [48].
Uterine NK (uNK) cells are the most-abundant lymphocytes
in the pregnant uterus and play diverse roles including pla-
cental vascular remodeling, trophoblast invasion to establish
a successful pregnancy. uNK cells lack CD16. CD16 is
important for antibody-dependent cellular cytotoxicity, thus
uNK cells are less cytotoxic than circulatory NK cells. In
early pregnancy stage steroid hormones, 17β-estradiol or
progesterone increases the expression of L-selectin and α4
integrin on circulatory CD56bright NK cells [49]. These
steroid hormones also induce the expression of chemokine
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ligands CXCL10 and/or CXCL11 on the endometrium [50].
Estradiol increases the expression of CXCR4 in uNK cells.
These regulate the mobility and migration of uNK cells in
the perivascular niche. Estradiol also induces uNK cells to
secrete CCL2, which results in endometrium angiogenesis
[51]. Dexamethasone shows differential effects on NK cells
based on the local cytokine milieu. In the presence of IL-2
and IL-12, dexamethasone augments the survival and pro-
liferation of human NK cells, increase the percentage of
CD16+ and DNAM1bright NK cells, enhance the expression
of surface markers CD94 or NKG2A, and improve the
mitochondrial function of NK cells, possibly by STAT4-
mediated signaling. IL-2, IL-12, and dexamethasone-treated
NK cells show an increased level of IFN-γ response by
restimulation [52]. Low concentration of glucocorticoids
reduces histone acetylation in the promoter region of genes
PRF1 (encodes perforin) and GZMB (encodes granzyme B),
thereby reduces the cytolytic activity of NK cells. Low
concentration glucocorticoid treatment prime NK cells for
the production of pro-inflammatory cytokines by

augmenting acetylation in the enhancer or promoter region
of genes IFNG (encodes IFN-γ) and IL-6 [53]. Interestingly,
glucocorticoid signaling assists in host survival to mouse
cytomegalovirus infection. Shortly after cytomegalovirus
infection in mice, endogenous glucocorticoids produced by
activation of the hypothalamic–pituitary–adrenal axis upre-
gulate the tissue-specific expression of checkpoint receptor
PD-1 on NK cells and it restricts IFN-γ production by NK
cells in spleen. This prevents exaggerated lethal immune
response, but does not compromise viral clearance [54].
Similar PD-1 upregulation was also observed in cancer.
Glucocorticoids in combination with specific cytokines (IL-
12, IL-15, and IL-18) induce the expression of inhibitory
checkpoint PD-1 on CD56bright subset of NK cells, the most-
abundant tumor-infiltrating NK cell subset, in human. PD-
L1-expressing tumor cells interact with PD-1 expressing
CD56bright NK cells and suppress them in the tumor micro-
environment [55]. It would be interesting to know the effect
of local steroidogenesis, particularly immune-cell ster-
oidogenesis, on NK cell function in different contexts of

Fig. 4 Effects of steroids on NK cells. A Glucocorticoids (GC) in
presence of specific cytokines (IL-12, IL-15, and IL-18) induce the
expression of inhibitory receptor PD-1 on CD56bright NK cells, which
is responsible for immunosupression in the tumor microenvironment.
B GCs reduce the expression of perforins, granzymes, and IFN-γ by
epigenetic modifications, which decrease the cytotoxic effect of NK
cell. Glucocorticoids also reduce the expression of integrin lympho-
cyte function-associated antigen 1 (LFA-1) on the surface of NK cell,
this hampers the attachment of NK cell to target cell. C Estradiol (E2)
induces uterine natural killer cells (uNK cells) to secrete chemokine

(C-C motif) ligand 2 (CCL2), which results endometrium angiogen-
esis. In early stage of pregnancy, estradiol (E2) or progesterone (P4)
increases the expression of L-selectin and α4 integrin on circulatory
CD56bright NK cells. D Low concentration of glucocorticoids reduces
histone acetylation in the promoter region of genes PRF1 (encodes
perforin) and GZMB (encodes granzyme B) thereby reduces the
cytolytic activity of NK cells; and prime NK cells for the production of
pro-inflammatory cytokines by augmenting acetylation in the enhancer
or promoter region of genes IFNG and IL-6. (Figure created with
BioRender.com).
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immune responses. For example, whether the induction of
local steroidogenesis in the tumor induces PD-1 expression
as a negative control of antitumor immunity is unknown.
The effects of steroids on NK cells are summarized in Fig. 4.

Steroid regulation of dendritic cell (DC)
function

DCs are the sentinels of adaptive immunity and immune tol-
erance being professional APCs. Several independent studies
demonstrated that glucocorticoids induce tolerogenic pheno-
type in DCs [56–60]. Glucocorticoids act on DCs differentially
based on the maturation stage. Dexamethasone-treated
immature DCs are incapable to mature fully and unable to
prime Th1 cell efficiently. Multiple restimulation of T cells

with dexamethasone-treated DCs leads to the selective
expansion of a specific subpopulation of T regulatory cells,
Tr1, which are negative for IFN- γ and IL-4 and positive for
IL-10 and do not constitutively express FoxP3 (not to confuse
with so called FoxP3 expressing regulatory T cells (Treg))
[61]. On the other hand, dexamethasone treatment does not
show any significant effect on LPS pre-treated DCs [62].
Prednisolone induces apoptosis in plasmacytoid DCs (pDC)
after liver transplantation, and suppresses the function of toll-
like receptor (TLR) stimulated pDC. TLR-stimulated pDCs
are comparatively less sensitive to prednisolone-induced
apoptosis. Only a higher concentration (above 1 μg/mL) of
prednisolone can induce apoptosis in TLR-stimulated pDCs.
Below this concentration of prednisolone (non-apoptosis
inducing concentration) suppress the function of TLR-
stimulated pDCs by suppressing IFN-α production and

Fig. 5 Effects of steroids on T lymphocytes. A Sex steroids decrease
the expression of Dll in cortical thymic epithelial cells (cTEC), which
results increase thymopoiesis. Dihydrotestosterone (DHT) increases
the expression of AIRE in medullary thymic epithelial cells and assists
in negative selection of T cells, on the other hand estrogens exhibit
opposite effect by decreasing AIRE transcription. CD11c+ cortical
dendritic cells play a crucial role in clonal deletion of activated cas-
pase. B In presence of steroids DCs fail to prime T helper cells toward
Th1. C CD28 signaling protects single positive T cells from
glucocorticoid-induced apoptosis. This event exclusively occurs in
later stage of thymocyte maturation. B7-1 (CD80) and B7-2 (CD86)

are the ligands of CD28 are expressed in the corticomedullary region
and medullary region of thymus where only single positive T cells are
observed. CD28 signaling is crucial to maintain sustained expression
of antiapoptotic molecule Bcl-XL and downregulate the expression of
pro-apoptotic molecule Bak via calmodulin and phosphatidylinositol 3
kinase (PI3K)-dependent pathway D Glucocorticoid-bound gluco-
corticoids receptor (GC/GR) induces glucocorticoid-induced leucine
zipper (GILZ), which in turn induce FoxP3 expression, and thereby
promoted peripheral Treg (pTreg) differentiation. (Figure created with
BioRender.com).
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diminish their maturation to APCs. Prednisolone (non-apop-
tosis-inducing concentration) upregulates CCR7, CD40,
CD80, and CD86 expression and also inhibit IFN-α and IL-6
production by TLR-stimulated pDC [63]. Dexamethasone-
treated DCs show reduced ability to induce a primary allor-
eactive T-cell response and to secrete IL-Iβ and IL-12p70 [64].
Dexamethasone inhibits granulocyte-macrophage colony-sti-
mulating factor (GM-CSF)-mediated exogenous antigen
uptake and processing by airway DC cells. However, dex-
amethasone treatment does not influence GM-CSF-mediated
upregulation of MHC-II and CTLA4 ligand expression by DC
cells, thus futile in presentation of preprocessed self-antigen to
alloreactive T cells in a one-way mixed lymphocyte reaction
[65]. Glucocorticoids downregulate the expression of CD86,
CD40, CD83, CCR7, and HLA-DR on DCs and impede IL-6
and IL-12p40 production by DCs in response to TLR7 and
TLR8 agonists [66]. Corticosteroid administration to herpes
simplex virus-infected patient reduces the number of IFN-α
secreting pDCs in blood and IFN-α level decreases in the
blood [67]. DC-secreted IL-12 is crucial for Th1 cell differ-
entiation. Glucocorticoids inhibit IL-12 production by DCs
and block the differentiation of Th1 cells. By contrast, glu-
cocorticoids treatment augments the capacity of DCs to induce
IL-4 synthesis in CD4+ lymphocytes. In the hyperin-
flammatory phase of sepsis, endogenous glucocorticoids sup-
press IL-12 production by DC cells and thus act as a lifeguard.
Mice with knocked out GR in DCs (Nr3c1fl/fl;Cd11ccre) are
highly vulnerable to LPS-induced sepsis. CD8+ DCs are a key
source of prolonged IL-12 production in LPS-treated Nr3c1fl/fl;
Cd11ccre mice. The underlying molecular mechanism behind
the exclusive sensitivity of CD8+ DCs to glucocorticoids is
still unclear [68]. 17-β-estradiol promotes fully functional DC
(in particular CD11c+ CD11bintermediate DC population
expressing high levels of MHC-II and CD86) differentiation
from murine bone marrow precursors in the presence of low
progesterone [69, 70]. Moreover, estradiol inhibits antigen
uptake and induces the expression of pro-inflammatory cyto-
kine genes (e.g., IL-12, IL-1, and IL-6) in
CD11c+CD11bintermediate DC. In pregnancy, elevated con-
centration (10−6 M) of progesterone reverts the effect of
estradiol [70]. Altogether the current understanding is that the
DCs are tolerogenic in the presence of steroids. However, it is
still unknown whether immune cells produce steroids on
demand to induce tolerogenic immune response of DCs to
maintain homeostasis.

Effects of steroids on T-cell development

T cells are generated from the hematopoietic stem cells of
bone marrow. Progenitors then move and colonize in the
thymus. Thymic stromal cells, including cortical epithelial
cells in the cortex provide a suitable microenvironment

essential for the T-cell differentiation and commitment [71].
Activation of δ-like (Dll) 4-Notch signaling is crucial for
thymopoiesis process [72]. Sex steroid ablation results in
increased expression of Dll4 and its downstream targets,
which results in enhanced thymopoiesis process (Fig. 5A)
[73]. Castration in male mice causes androgen deficiency,
which results thymic enlargement shifting the T-cell balance
toward the T helper subset and administration of androgens
changing the balance toward CD8 suppressor/cytotoxic T-
cell predominance [74]. The underlying mechanism is still
poorly understood. Medullary thymic epithelial cells
(mTECs) provide an important role in central tolerance
establishment by expressing autoimmune regulator (AIRE)
gene. AIRE induce Treg cell production and helps in the
negative selection of self-reactive T cells by regulating the
expression of peripheral tissue-specific antigens in mTECs.
Mutation in AIRE gene results in multi-organ autoimmune
disorders reported in mice and human [75]. Ligand-bound
androgen receptor binds to the AIRE promoter and enhances
its expression. Dihydrotestosterone administration shows
increased upregulation of AIRE expression in human and
mice thymus [76]. By contrast, estrogen downregulates
AIRE expression by epigenetic modifications. It may be one
of the reasons of sex bias in autoimmune disorders; females
are more susceptible to autoimmune disorders with compare
to male [77]. CD4−CD8−TCR− thymocytes show the
highest and CD4+CD8+TCRlow thymocytes show lowest
expression of GR among all the developmental subsets of
T cells. CD4+CD8+TCRlow subset of thymocytes are most
sensitive to glucocorticoid-induced apoptosis [78, 79].
Whereas mature single positive T cells are resistant to
glucocorticoid-induced cell death. CD28 signaling protects
single positive T cells from glucocorticoid-induced apopto-
sis. CD28 signaling exclusively occurs in later stage of
thymocyte maturation. B7-1 (CD80) and B7-2 (CD86) are
the ligand of CD28 molecules and these are expressed in the
corticomedullary region and medullary region of thymus
where only single positive T cells are observed.
CD28 signaling is crucial to maintain sustained expression
of antiapoptotic molecule Bcl-XL and downregulate the
expression of pro-apoptotic molecule Bak in single positive
thymocytes via calmodulin and phosphatidylinositol 3
kinase-dependent pathway (Fig. 5C) [80]. The role of
endogenous glucocorticoids has been elegantly tested in
genetically modified mouse models [81]. It was found that
both mature and immature T cells are sensitive to intrinsi-
cally generated glucocorticoid-mediated apoptosis. Hydro-
xysteroid 11b dehydrogenase-1 enzyme (encoded by
Hsd11b1 gene) converts inactive metabolite 11-DHC into
active corticosterone in thymocytes and peripheral T cells,
which induces apoptosis. T-cell receptor (TCR) activation
protects T cells from apoptosis (Fig. 5C) [82].
Glucocorticoid-bound GR binds to the GR motif of Il7ra
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promoter in mouse T cells [83], and influence diurnal
oscillation in T-cell distribution by inducing the expression
of IL-7R and CXCR4. Glucocorticoid-stimulated GR sig-
naling augments IL-7R expression with a peak at midnight
and a nadir at midday in mouse T lymphocytes. Thus,
T cells accumulate in spleen and show enhanced immune
responses at night [84]. The further detail study is essential
to explore the diurnal rhythm-based steroid regulation of
immune functions.

Steroid regulation of T lymphocyte function

Interactions between an APC and naïve helper T cell results
the differentiation of T helper cells and induction of adap-
tive immunity. Upon TCR activation and stimulation with
lineage-determining cytokines, T helper cells differentiate
into one of several lineages of T helper (Th) cells such as
Th1, Th2, Th17. These differentiated T helper cells are
characterized by their characteristic cytokine expression
[85]. Glucocorticoids inhibit the proliferation of antigen-
specific Th1 and Th2 clones and downregulate antigen-
induced cytokine genes (e.g., IL-4, IL-13, and IFN-γ)
expression in concentration-dependent manner. Dex-
amethasone also impedes antigen-induced pro-inflamma-
tory cytokine (IL-4, IL-5, IL-13, IFN-γ) gene expression in
peripheral blood mononuclear cells [86]. Dexamethasone
suppresses Th1 cellular immunity by selectively impeding
IL-12-induced Stat4 phosphorylation and thus suppressing
IFN regulatory factor-1 promoter activity in Th1 cells [87].
GATA3 is a key transcription factor involved in Th2
humoral immune responses. Glucocorticoids inhibit the
expression of GATA3 as well as cAMP‐induced PKA/p38
MAPK GATA3 phosphorylation [87, 88]. T-bet transcrip-
tion factor influences the phenotype of Th1 cells and con-
trols the expression of the potent inflammatory cytokine
IFN‐γ. Glucocorticoids inhibit transcriptional activity of T-
bet [89]. Sex steroids also regulate the function of T helper
cells [90–92]. In contrast to the glucocorticoids, estrogens
promote INF-γ expression in Th1 cells [92–94]. Estrogen-
activated ER binds to the Ifng promoter [93, 95], and
enhance the expression of transcription factor T-bet
[94, 96]. However, estrogen-mediated response can be
context-dependent. It can skew the immune response from
Th1 to Th2 type [97–99]. The effects of estrogens on Th17
cells depend on the experimental model, leading to
enhancement [100, 101] or decrease of effectiveness of
these cells [102, 103]. Steroid hormones primarily suppress
CD8+ T-cell function [104]. The activity of splenic cyto-
toxic T lymphocytes gets suppressed distinctly after pre-
incubation with several glucocorticoids (in sub-nanomolar
concentration) for several hours [104]. However, the
mechanism of action, particularly how glucocorticoids

effect directly on CD8+ cytotoxic T-cell function is sur-
prisingly limited and still unclear. The present under-
standing is that the glucocorticoids activated GR trans-
repress AP-1 and NF-κB transcription factors. However,
recent studies raised the possibility that besides actively
repressing pro-inflammatory gene expression, they may also
promote suppression via transactivation of immune-
suppressive genes [105]. The recent addition to this end is
that the glucocorticoids may also upregulate inhibitory
receptor expression in CD8+ T cells [16, 106]. It would be
interesting to see how local T-cell-mediated steroidogenesis
regulates T-cell-mediated adaptive immunity in different
immunological contexts, in an autocrine and paracrine
manner, particularly where Th2 cells are involved. All the
previously observed suppressive effects of steroids on
T cells speculate that local steroidogenesis may involve in
the resolution (active termination) of immunity once T cells
are done with their functional role.

Steroid regulation of Treg

Treg, a subpopulation of suppressive T cells, are crucial for
immune tolerance and essential for the maintenance of
immune homeostasis. The immune-modulating capacity of
these cells plays a major role in transplantation, autoimmune
disease, infection, allergy, cancer, and pregnancy. Gluco-
corticoids regulate the development and function of these cells
[107]. Glucocorticoid signaling increases both the number
[107–111] and function of Treg cells [112–114].
Glucocorticoid-induced leucine zipper protein GILZ is essen-
tial for the crosstalk between glucocorticoids and TGF-β
receptor (Fig. 5D). Overexpression of GILZ enhances Treg
cell production, while deletion of GILZ in T cells produce
fewer peripheral Treg cells [107]. Steroid regulation of Tregs
is not limited to glucocorticoids. The high level of estrogen in
pregnant women causes the elevation of CD4+CD25+ Treg in
peripheral blood, which is responsible for immunomodulation
in pregnancy [115]. Estradiol-bound ER alpha drives FOXP3
expression by binding with the FOXP3 promoter of Treg cell
in both healthy male and in tumor microenvironment of cer-
vical cancer patients [116]. It has been shown that several
autoimmune disorders, including multiple sclerosis is tempo-
rally suppressed by pregnancy. In pregnant placental female,
progesterone and other steroid hormones promiscuously bind
to the GR in T cell and cause robust expansion and enrichment
of Treg cells. This confers protection from autoimmunity in
pregnant placental mammals. Further study in this field will be
very effective in cure of autoimmune disorders [117]. For
example, artificial induction of local steroidogenesis (e.g.,
immune-cell steroidogenesis) can be one such strategy. Dex-
amethasone increases the miR-342-3p expression in Treg
cells. miR-342-3p targets rictor, a subunit of mTORC2
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complex, which results in metabolic reprogramming in Treg
cell through robust increase of oxidative phosphorylation
[118]. FOXP3+CD4+ T regulatory cells are very delicate to
dexamethasone-induced apoptosis based on dose and time of
exposure to dexamethasone, but this sensitivity differs in
diverse subset of FOXP3+CD4+ Treg cells. Slow-cycling
Treg cells (CD25lowCD45RA+) are comparatively resistant
whereas fast-cycling Treg cells (CD25highCD45RA−) are
relatively sensitive to dexamethasone-induced apoptosis. But
once Treg cells get activated, the suppressor activity of Treg
cells is not influenced by dexamethasone [119].

Steroid regulation of B lymphocytes

After activation B lymphocytes differentiate and form memory
B cell as well as antibody secreting plasma cells. B cells are
also potent APCs. In mammals, B cells are originated and
matured in the bone marrow. Mature B lymphocytes migrate
to the secondary lymphoid organs or tissues where they
interact with T lymphocytes and undergo plasmacytic differ-
entiation. GRs have found to be highly expressed in all
developmental subsets (pro/pre IgM−IgD−, immature
IgM+IgD−, mature IgM+IgD+) of B220+ B cells. Dex-
amethasone administration in adrenalectomized mice causes
the reduction of B-cell number in both spleen and bone
marrow by inducing B-cell apoptosis [120]. Hydrocortisone
induces IgE synthesis in human B cell by prompting isotype
switching [121]. Glucocorticoids functionally impair upstream
BCR and TLR7 signaling and significantly enhance the
expression of anti-inflammatory cytokine IL-10, and terminal-
differentiation factor BLIMP-1 [122]. Estrogen blocks toler-
ance induction of naive autoreactive B cells and upregulate the
expression of antiapoptotic Bcl-2 molecule [123]. In vitro
experiment on mice splenic B cell revealed that estrogen
enhances the activity of B cells by downregulating CD80
expression on B cell. Decreased CD80 expression on B cell
diminishes CTLA4-CD80 interaction, which impairs the
negative control of T-cell activation. Estrogen upregulates IgG
antibody production by splenocyte without stimulating pro-
liferation and differentiation of B cell to plasma cell. Estrogen
also protects splenic B-cell apoptosis in serum-deprived con-
dition [124]. Testosterone is an endogenous regulator of B-cell
survival factor BAFF. In castration, testosterone deficiency
results in upregulation of B-cell number and increases the risk
of autoimmunity [125].

Future of steroidogenesis research with the
newly developed tools and technologies

We are on the verge of a technological explosion in the area of
cell and molecular biology. It is expected that many aspects of

steroid signaling will be resolved in the coming years. Perhaps
the most exciting area to explore would be the extra-glandular
(local) steroidogenesis. During the last decades, we have seen
that immune cells respond to the steroid hormone signaling.
When we are beginning to better understand how steroids
exert their effect on immune cells, another level of complexity
and possibility arose. The existence of steroidogenesis and
steroid signaling within the immune system raises new pos-
sibilities on how immune cells communicate to shape phy-
siology of immune response and how it is maladapted in
pathology. This can revolutionize the understanding of
immune regulation because nuclear receptor signaling (e.g.,
GR, ER, androgen receptor, mineralocorticoid receptor-
mediated signaling) is dramatic, and GR alone can control
20% of the genes [105, 126]. It would be exciting to discover
the basic principles of immune-cell-mediated steroidogenesis
in immune-cell regulation.

To discover steroid biosynthesis and metabolism path-
way in immune cells, profiling and quantification of all
steroids and intermediate metabolites of steroids in immune
cells need to be done. The improvement in liquid chroma-
tography/tandem mass spectrometry promises such an
approach [127]. Complex steroid metabolic pathway in
immune cells can be explored by metabolic flux analysis
using physiologically based pharmacokinetic modeling. A
recent technique called AGPathFinder can be used to find
biochemically relevant metabolic pathways between two
steroid metabolites [128]. The activity of steroidogenesis-
specific enzymes in immune cells can be assessed with the
help of chemoproteomic method activity-based protein
profiling technique [129]. Discovery-based metabolomics
(DMP) study can be used to identify known and unknown
metabolite intermediates of steroid [130]. The fields of
single-cell transcriptomics [131], multimodal omics [132],
and spatially resolved [133] transcriptomics are rapidly
expanding with their enormous capability. Steroidogenic
and steroid-responsive gene expression and regulatory net-
work in immune cells can be mapped applying these
cutting-edge technologies. These approaches can be useful
to detect steroid synthesizing rare cell types in a specific
immunological microenvironment. In many experiments, it
has been shown that steroids may modulate the functions of
immune cells by epigenetics changes. Chromosome con-
formation capture (3C) assay, circular chromosome con-
formation capture (4C), chromosome conformation capture
carbon copy (5C) will be helpful to analyze the changes in
genomic interactions [134–136]. Steroid hormone receptors
(nuclear receptors) mainly exert their effect by binding
chromatin and regulating gene expression. A recently
developed method combining ChIP with selective isolation
of chromatin-associated proteins followed by mass spec-
trometry to identify chromatin-bound partners of a protein
of interest [137] is anticipated to shed light in this area.
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Fig. 6 Important genetically
modified mouse models that
are not fully exploited to study
immune-cell-mediated
steroidogenesis and steroid
signaling. These mice models
can be instrumental to discover
several aspects of endogenous
steroid regulation of immune-
cell function. (Figure created
with BioRender.com).

Fig. 7 Diagrammatic summary
of how technical and
methodological advancement
can shape the future of
steroidogenesis research. This
imagination reflects only
authors’ viewpoint and it is
likely that many other important
possibilities are missed. (Figure
created with BioRender.com).
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To date, there is very little information on relationship
between noncoding RNA and steroid metabolites. It would
be interesting to study the correlation of noncoding RNA
and steroid metabolites in immune cells in different
microenvironment and disease condition by quantifying
microRNA using miREIA and SplintR-qPCR technologies
[138]. Localization of liganded steroid receptors in immune
cells can be detected using fluorescent labeling (e.g., GFP
tag) or by small nonfluorescent approaches (e.g., FlAsH-
based method). To understand the molecular interactions in
a cell population, NicheNet analysis from single-cell RNA
seq of a cell population can be used. It will help predict
cellular interactions in a cell population by linking ligand
and target gene expression in the cells of that micro-
environment. Immune reprogramming in a microenviron-
ment and the influence of a particular steroid molecule can
be detected by this approach [139]. RNA velocity analysis
in single cells will greatly assist us in studying lineage
trajectories, gene regulation, and to identify pathway
activity [140].

There are newly developed transgenic mice that hold the
potential of groundbreaking changes in the field (Fig. 6). To
track steroidogenic cells in vivo, steroidogenesis reporter
mice, Cyp11a1-H2B-mCherry reporter [12], mice can be
useful. Cyp11a1fl/fl mice can be used to delete the Cyp11a1
cell-type-specific and stop steroid biosynthesis in the cell
type of interest [12]. To delete any gene of interest in
steroidogenic cells Cyp11a1-GFP-Cre line [141] can be
instrumental. To study the effect of steroids Nr3c1fl/fl

[81, 142], Nr5a2 fl/fl [143] mice are developed, but their full
potential has not been exploited.

Altogether, we are entering into an era full of excitement
of new discoveries and innovations in the area of ster-
oidogenesis and steroid signaling. We tried to visualize our
imagination how technological and methodological
advancement is anticipated to shape the future of ster-
oidogenesis research (Fig. 7). This imagination reflects only
authors’ viewpoint and it is likely that we are missing many
important aspects that may bring dramatic impact on ster-
oidogenesis research.

Conclusion and perspectives

Steroids are indispensable biomolecules of our body. They
regulate several physiological processes. Despite the myriad
studies, steroid regulation of immune system is still mys-
terious. Steroids influence the immune-cell function based
on the microenvironment, steroid type, concentration, time
of exposure, and maturation stage of immune cells. Steroids
have a direct or indirect influence on almost every type of
immune cells, the underlying molecular mechanism of some
have been explored, but mostly remain in mystery. The

influence of local steroids may play a major regulatory role
in these processes. Dysregulation of immune system and
immune reprogramming play significant roles in the onset
or progression of the disease. Steroid-producing immune
cells and local steroidogenesis may play an important role
in this immune regulation. Thus, exploring the influence of
steroids on immune system will enrich basic science.

Synthetic steroids are used as anti-inflammatory and
immunosuppressant drugs. Frequently prescribed in asthma,
chronic obstructive pulmonary disease, hay fever, hive,
eczema, arthritis, inflammatory bowel disease, lupus,
Crohn’s disease, multiple sclerosis, organ transplantation
and also in clinical oncology. Unfortunately, long-term use
causes deleterious side effects and eventually, drug resis-
tance developed. The discovery of underlying fundamental
principles of immune-cell-mediated steroidogenesis and
endogenous steroid-regulation of immune cells is expected
to innovate novel therapeutic strategies to bypass undesir-
able side effects of synthetic steroids, ensuring more phy-
siological resolution of inflammation and immunity.
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