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SUMMARY

Host genetic variation influencesmicrobiomecompo-
sition.While studieshave focusedonassociationsbe-
tween the gut microbiome and specific alleles, gene
copy number (CN) also varies. We relate microbiome
diversity to CN variation of theAMY1 locus, which en-
codes salivary amylase, facilitating starch digestion.
After imputing AMY1-CN for �1,000 subjects, we
identified taxa differentiating fecal microbiomes of
high and low AMY1-CN hosts. In a month-long diet
intervention study, we show that diet standardization
drove gut microbiome convergence, and AMY1-CN
correlated with oral and gut microbiome composition
and function. Themicrobiomes of low-AMY1-CN sub-
jects had enhanced capacity to break down complex
carbohydrates. High-AMY1-CN subjects had higher
levelsof salivaryPorphyromonas; their gutmicrobiota
had increased abundance of resistant starch-degrad-
ing microbes, produced higher levels of short-chain
fatty acids, and drove higher adiposity when trans-
ferred to germ-free mice. This study establishes
AMY1-CN as a genetic factor associated with micro-
biome composition and function.

INTRODUCTION

Host genotype has recently emerged as a significant factor in

shaping the relative abundance of specific members of the

human gut microbiota (Goodrich et al., 2016; Rothschild et al.,

2018). Heritable gut microbes, whose abundances are influ-

enced by host genotype, have been identified, and genome-

wide association studies (GWASs) have linked specific gene

variants to members or functions of the gut microbiome (Good-

rich et al., 2014, 2016, 2017; Lim et al., 2017; Davenport et al.,

2016; Turpin et al., 2016; Davenport et al., 2015). In addition to
Cell Ho
single nucleotide polymorphism (SNP) differences between indi-

viduals, another important aspect of human genetic variation is

the copy number (CN) of genes. Gene duplications resulting in

increased CN provide a rapid means of adaptation to environ-

mental change (Iskow et al., 2012). Copy-number variation

(CNV) in genes accounts for more genomic variability than

SNPs (Conrad et al., 2010) and significantly influences gene

expression (Chiang et al., 2017). This important aspect of genetic

variability likely affects microbiome differences between individ-

uals, but links between the CNV of specific human genes and the

microbiome remain to be elucidated.

CNV of the AMY1 gene, encoding the salivary amylase

enzyme, is considered one of the strongest signals of recent nat-

ural selection on human populations (Perry et al., 2007). Salivary

amylase hydrolyzes alpha bonds of starch and glycogen, begin-

ning the process of starch degradation in the mouth. AMY1-CN

is positively correlated with oral amylase activity (Mandel et al.,

2010; Perry et al., 2007). A shift to greater starch consumption

during the agronomic transition of the Neolithic period likely

selected for the duplications observed within the AMY1 locus

(Kelley and Swanson, 2008; Iskow et al., 2012; Perry et al.,

2015). Today, the mean AMY1-CN is reported higher in popula-

tions with an agrarian background compared to hunter-gath-

erers (Perry et al., 2007). Across genetic backgrounds, human

AMY1-CN ranges from 2 to 24 (Usher et al., 2015; Yong et al.,

2016; Perry et al., 2007).

Complex carbohydrates, a broad category of polysaccharides

that includes starch, first encounter amylase in themouth, then in

the small intestine (SI), where pancreatic amylase is added to the

chyme and the liberated sugars are absorbed. SI uptake of

sugars liberated by host enzymes yields more energy to the

host than uptake in the large intestine (LI) of microbial fermenta-

tion products (Walter and Ley, 2011). Host-microbial competi-

tion for starch may have driven selection for duplications at the

amylase locus. Indeed, amylase supplementation to farm ani-

mals enhances starch digestibility and promotes weight gain

(Burnett, 1962; Gracia et al., 2003; Jo et al., 2012). Similarly, hu-

mans with a high AMY1-CN (AMY1H), who produce high levels

of salivary amylase, should derive more energy from the same
st & Microbe 25, 553–564, April 10, 2019 ª 2019 Elsevier Inc. 553
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Figure 1. AMY1-CN Distribution and Mean Amylase Salivary Activity

for the Intervention Group

(A) Diploid AMY1-CN distribution for 105 subjects, from which the 25 inter-

vention subjects were selected, was obtained using qPCR with primer

sequences previously reported (Perry et al., 2007).

(B) Mean amylase activity per mL of saliva ± SEM at each time point for the

25 individuals in the AMY1-CN intervention groups. Measurements were

performed in triplicate for both qPCR and salivary amylase activity.
carbohydrate-rich diet than those with a low AMY1-CN (AMY1L).

Compared to AMY1H, AMY1L individuals might be expected to

harbor gutmicrobiomeswith a greater capacity for breakdown of

complex carbohydrates, compensating for the lower levels of

host amylase.

Because of its link to carbohydrate digestion, AMY1-CN has

been investigated for associations with BMI and metabolism.

Results of these studies vary, with low AMY1-CN associated

with high BMI in some populations (Viljakainen et al., 2015; Me-

jı́a-Benı́tez et al., 2015; Falchi et al., 2014; Marcovecchio et al.,

2016; Bonnefond et al., 2017), but not others (Usher et al.,

2015; Yong et al., 2016). Discrepancies may be methodological

(Usher et al., 2015) or due to variation in starch intake between

individuals (Rukh et al., 2017). Whether the gut microbiome,

which is known to impact host metabolism (Sonnenburg and

B€ackhed, 2016; Zeevi et al., 2015; Pedersen et al., 2016; Good-

rich et al., 2014), responds to host AMY1-CN remains to be

ascertained.

Here, we address how AMY1-CN relates to the diversity and

function of the gutmicrobiomes of healthy individualswith normal

BMIs. Using an existing dataset of genotyped individuals with

associated fecal microbiome diversity data, we identified taxa

that discriminated high and low AMY1-CN individuals. We then

conducted an intervention study by screening >100 volunteers

for AMY1-CN and recruiting 25 participants into a 1-month longi-

tudinal study in which diet was standardized for 2 weeks. We

used 16S rRNA gene sequence analysis to assess the effects

of host AMY1-CN and diet intervention on oral and fecal micro-

biomes. In addition, we obtained a functional characterization
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of fecal microbiomes through (1) deepmetagenomic sequencing,

(2) short-chain fatty acid (SCFA) measures, and (3) fecal transfers

to germ-free mice. Together, results support an association

between host AMY1-CN and microbiome diversity and function.

RESULTS

Identification of Gut Microbiota that Discriminate
between Hosts with High and Low Predicted AMY1-CN
Genotypes
We searched for microbial taxa that discriminate fecal micro-

biomes of subjects with high or low AMY1-CN in a genotyped

population with available fecal microbiome data (Goodrich

et al., 2016; STAR Methods). Available genotype data included

7 of the 10 SNPs that correlate with AMY1-CN (Usher et al.,

2015). For each of 994 subjects with normal BMIs and available

microbiome data, we calculated the sum of the change in AMY1-

CN values corresponding to each of their 7 alleles. We then

selected the top and bottom 5% of the distribution (50 subjects

at each extreme of predicted total difference in AMY1-CN).

Using a bivariate model (hereafter referred to as ‘‘Harvest’’)

(Bar et al., 2014), we identified 17 operational taxonomic units

(OTUs) whose relative abundances discriminated high and low

groups (Table S1). Some of these OTUs were classified as

Ruminococcus, Faecalibacterium prausnitzii, and Bacteroides.

Members of the Ruminococcaceae family were prominent

among the taxa enriched in fecal microbiomes obtained from

subjects with predicted high AMY1-CN.

Intervention Study and Participants
We collected buccal swabs from 105 volunteers recruited on the

Cornell University campus and measured their AMY1-CN by

qPCR (Figure 1A; Table S2; Data S1), then selected 25 partici-

pants across the AMY1-CN distribution for further study. We

confirmed the AMY1-CN of participants using alternate qPCR

primers and digital PCR (STAR Methods; Table S3). Based on

the results, 11 participants were assigned to a high group (CN

> 8, designated AMY1H), 5 to a medium group (5 < CN < 8,

designated AMY1M), and 9 to a low group (CN < 5, designated

AMY1L). Neither BMI nor body fat percentage differed signifi-

cantly between groups (Table S3). CN of the gene for pancreatic

amylase, AMY2, was positively correlated with AMY1-CN

(Spearman’s rho = 0.79, p = 3 3 10�8; Table S3) and had a

smaller range.

Dietary Intake Was Similar between AMY1-CN Groups
throughout the Study
To mitigate the effects of dietary differences between individ-

uals on their microbiomes and to promote frequent starch

consumption, during study weeks 2 and 3 we provided all

participants with all meals and snacks. Participants ate from

the same menu freely, occasionally supplemented it (Table

S4), and recorded their dietary intake in food diaries (STAR

Methods). Based on dietary records, mean percentages of total

carbohydrate, protein, and fat intake did not differ significantly

between the AMY1H, AMY1M, and AMY1L groups, regardless

of whether meals were consumed during (weeks 2–3) or outside

(weeks 1 and 4) of the standardized diet period (Figures S1A–

S1C). The intake of all three macronutrients differed between
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Figure 2. Oral Microbiomes Differ in Diversity between AMY1-CN

Groups

(A) Alpha diversity assessed with the metric Chao 1 (n = 25).

(B) Principal coordinate analysis (PCoA) of the unweighted UniFrac distances

between samples collected from all 25 subjects throughout the study. The first

two PCs are plotted. The percent variation explained by each PC is indicated

on the axes. Samples are colored according to AMY1-CN group. See also

Figure S2.
days (p < 1 3 10�5). However, the standardized diet period did

not significantly impact mean intake of macronutrients.

AMY1-CN versus Oral and Fecal Amylase Activity
Weobtained saliva and stool samples at 12 timepoints (TPs; 3 per

week). Salivary amylase activity (SAA) ranged between 10.2 and

527 units per mL of saliva, similar to previously reported ranges

(Mandel et al., 2010). AMY1-CN correlated with SAA across all

subjects at all TPs (linearmixedmodel; p = 2.13 10�5). SAA levels

for the AMY1H were higher than for the AMY1L at all TPs (linear

mixed model; p = 1.93 10�4; Figure 1B) with AMY1M individuals

intermediate (Figure S2A). Fecal amylase activity (FAA) was

variable within and between subjects (0.6–1,120 Ug�1 stool;

Figure S1D). Unlike SAA, FAA did not correlate with AMY1-CN.

To further characterize FAA, we used an ELISA method (STAR

Methods) to measure levels of host pancreatic amylase in stool

samples at TPs 6 and 10. Across all 25 subjects, pancreatic

amylase levels were highly correlated with FAA (Spearman’s

rho = 0.80, p = 3.7 3 10�6 for TP 6 and Spearman’s rho = 0.78,

p = 6.3 3 10�5 for TP 10; Figure S1E), although AMY2-CN was
not. This finding corroborates previous reports that FAA is largely

pancreatic (Macfarlane and Englyst, 1986; Moriyoshi et al., 1991).

Classification of the Oral Microbiota by Host AMY1-CN
Saliva samples were profiled for microbial community diversity

by Illumina sequencing 16S rRNA gene PCR amplicons (V4 re-

gion; Table S2). Sequences were clustered into OTUs using a

threshold of 97% pairwise sequence identity (STAR Methods).

We observed that oral microbiome richness (alpha diversity)

was correlated with AMY1-CN (using Chao 1, Observed Spe-

cies, and Faith’s PD metrics p < 0.01, but not Shannon’s Index,

which is also a measure of evenness) and was higher in AMY1H

than AMY1L individuals (p = 0.011; Figure 2A).

We applied the UniFrac metrics to assess between-subject

(beta) diversity. Principal coordinate analysis (PCoA) of un-

weighted UniFrac distance metrics revealed clustering of saliva

microbiomes by subject and a trend for separation by AMY1-

CN group across all subjects (Figures 2B, S2B, and S2C).

Together, these observations indicate that across the AMY1-

CN gradient, a higher AMY1-CN is associated with greater rich-

ness of the microbiome without a significant shift in overall

diversity.

We searched for OTUs that distinguished AMY1H and AMY1L

categories (AMY1M excluded) using a machine learning tech-

nique (random forest; STAR Methods). A model trained on

80% of the samples produced an accuracy of 97.67% with a

Matthews correlation coefficient (MCC) of 94.92% and an area

under the curve (AUC) of 96.66% once it was tested on the

remaining 20% of the samples. We then used a feature selection

process to identify the relevant features of the model. Among

the top OTUs that most discriminated AMY1H and AMY1L

groups (AMY1M excluded) were OTUs classified as Prevotella

and Porphyromonas (Figure 3A; Table S5). In order to include

all 25 participants, we reclassified the individuals into only two

new AMY1 groups, AMY1H0 (CN > 6) and AMY1L0 (CN < 6),

using k-means. Using this assignation, 13 subjects were in the

AMY1H0 and 12 were in the AMY1L0. Performing machine

learning using the AMY1H0 and AMY1L0 groups yielded similar

results (Figure S3).

To gain a time-resolved view into the taxa driving differences

for subjects at the extremes of the AMY1-CN gradient, we

compared AMY1H and AMY1L groups (AMY1M excluded) at

each TP usingHarvest. This analysis revealed 9 OTUswith signif-

icantly different mean relative abundances between AMY1H

and AMY1L (Figure 3B); none exhibited different variances.

As observed for the machine learning analysis, OTUs that

discriminated the AMY1H and AMY1L groups belonged to the

genera Prevotella, Haemophilus, Neisseria, and Porphyromonas

(Figure 3B; Table S5). These patterns highlight that the same

OTUs are consistently elevated over time in either AMY1H

or AMY1L.

Classification of the Fecal Microbiota by Host AMY1-CN
In contrast to oral microbiomes, the alpha diversity of fecal micro-

biomes was generally similar between AMY1-CN groups (using

Chao 1, Observed Species, and Faith’s PD metrics; Figure 4A).

Beta diversity was unrelated to host AMY1-CN (Figures 4B and

S4A), with some clustering by subject (Figure S4B). Using a

random forest analysis, the prediction performed on the 20% of
Cell Host & Microbe 25, 553–564, April 10, 2019 555
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Figure 3. Oral Microbiomes Differ between AMY1-CN Groups at the OTU Level
(A) The OTUs shown here were identified using machine learning as distinguishing between AMY1H and AMY1L groups (n = 20). The length of the bar represents

the magnitude of the mean decrease in Gini index and the orientation indicates the group in which the OTU is enriched.

(B) The mean relative abundances of the OTUs included in this ribbon plot were significantly different between AMY1H and AMY1L groups at one or more TPs

using the statistical model Harvest (n = 20). Each ribbon corresponds to a single OTU with taxonomy indicated to the left, with unclassified abbreviated ‘‘U.’’

Taxonomy may be shared by several OTUs. The width of the ribbon at each TP shows the ratio of the mean OTU relative abundances between the AMY1-CN

groups. If the ribbon is colored orange at a given TP, the AMY1H group has a higher mean relative abundance of the OTU; when purple, the AMY1L has a higher

mean relative abundance. When the ribbon is colored gray, the Benjamini-Hochberg (BH) adjusted p R 0.15. Lighter orange or purple corresponds to a BH

adjusted p < 0.15; darker colors correspond to BH adjusted p < 0.05. The asterisk (*) denotes an OTU that was assigned taxonomy with higher resolution after

performing a BLAST search using the representative sequence. See also Figure S3 and Table S5.

556 Cell Host & Microbe 25, 553–564, April 10, 2019
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Figure 4. Gut Microbiomes Do Not Differ in Overall Composition be-

tween AMY1-CN Groups

(A) Alpha diversity (Chao 1) for the gut microbiomes over time.

(B) PCoA of the unweighted UniFrac distances between microbiomes derived

from fecal samples.

See legend for Figure 2. See also Figure S4.
the samples reserved as a testing dataset produced an accuracy

of 98.21% with an MCC of 96.04% and an AUC of 97.36%. After

performing a feature selection process, we identified OTUs

discriminating between AMY1H and AMY1L as belonging to

Ruminococcaceae (Ruminococcus and Oscillospira) and Lach-

nospiraceae (Blautia, Dorea, and Roseburia; Figure 5A; Table

S6). Similarly, when all 25 subjects were reclassified into low

and high groups based on k-means clustering (AMY1M included,

as above), a similar set of discriminatory OTUs was observed

(Figure S5).

We also identified taxa that differentiated AMY1H and AMY1L

groups at each TP (using Harvest): 7 of the 11 discriminatory

OTUs were members of the Ruminococcaceae family, and all

but one were elevated in the AMY1H compared to the AMY1L

group (Figure 5B; Table S6). As observed in the oral microbiota,

the Harvest analysis showed that discriminatory OTUs were

consistently enriched in the same AMY1-CN category. Members

of the Ruminococcaceae have been linked to resistant starch

degradation: enrichment of Ruminococcaceae OTUs in the
AMY1H is consistent with reduced availability of starches sus-

ceptible to host amylase degradation in the distal gut of the

AMY1H host. OTUs classified to the Ruminococcus genus were

also enriched in the 994 subjects (above) with predicted high

host AMY1-CN.

Effect of Diet on the Oral and Fecal Microbiomes
We assessed whether diet standardization resulted in more

similar microbiomes (i.e., reduced beta diversity) for AMY1H

and AMY1L groups by comparing samples before, during, and

after the standardized diet. Non-parametric bootstrap confi-

dence intervals (CIs) for the differences in the weighted and

unweighted UniFrac distances between AMY1H and AMY1L

groups for each pair of diet periods indicated that diet standard-

ization did not induce convergence of oral microbiomes between

AMY1H and AMY1L subjects but did so for the gut microbiomes

(Figures S5B and S5C).

Deep Metagenome Sequencing Reveals Differences in
Functional Capacity between AMY1-CN Gut
Microbiomes
We compared the metabolic potentials of the gut microbiomes

for AMY1H and AMY1L groups using metagenomes generated

for all subjects sampled at 6 TPs (3, 4, 6, 7, 9, and 10). We sub-

sampled 20 million paired-end reads per sample to normalize

sequencing depth and used the HMP Unified Metabolic Analysis

Network (HUMAnN2) pipeline to classify shotgun metagenomic

reads into gene families (Figure 6A). Using non-parametric boot-

strapping with 1,000 permutations, we determined that Bray-

Curtis distances calculated from gene family counts decreased

in mean values between AMY1H and AMY1L individuals during

the diet period relative to the pre-diet period (Figure 6B). The

number of gene families significantly enriched in the AMY1H

group was also lower after TP 4 (Figure 6D), and the number of

gene families significantly different between AMY1 groups was

lower after TP 4 regardless of taxonomy or function (Figures 6C

and 6E). We also observed a spike of differentially abundant

genes associated with mobile elements at the start of the diet

provision period (TP 3 to TP 4), which is consistent with nutritional

stress-induced activation of prophages, lytic bacteriophages,

and horizontal gene transfer (Huddleston, 2014; Lerner et al.,

2017). Thus, the diet standardization drove the convergence of

metabolic functions as well as composition.

Despite the convergence of AMY1H and AMY1L microbiomes

over the standardized diet period, the two groups could be

differentiated by their functional gene content. We used the

statistical software DESeq2 to identify gene families with

differential abundances between high and low AMY1 groups at

each time point. We identified 481 gene families with significantly

different read counts at one or more TPs between AMY1H and

AMY1Lgroups (Figure 6A). Notably, 39%of the 481 gene families

were taxonomically assigned toBacteroidesdoreiandweremore

abundant in the AMY1H group at multiple TPs, in accordance

with our 16S rRNA gene diversity results (Figures 5B and 6A).

Eight other species of Bacteroides were identified, but only Bac-

teroides cellulosilyticus was enriched in the AMY1L group. In

accordance with the results of the 16S rRNA gene diversity

analysis, reads for gene families mapping to Ruminococcus

were enriched in the AMY1H group (Figures 5B and 6A).
Cell Host & Microbe 25, 553–564, April 10, 2019 557
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Sequences mapping to gene families from Prevotella copri were

also more abundant in AMY1H, but almost exclusively at TP 3,

consistent with the 16S rRNA gene diversity data. Together,

these data support a relative enrichment in taxa responsible for

resistant starch breakdown in the AMY1H microbiomes.

To directly assess functional capacity for carbohydrate degra-

dation, we used hidden Markov models from dbCAN to identify

carbohydrate-active enzymes (CAZymes), which include the

following enzyme classes: glycoside hydrolases (GH), glycosyl-

transferases (GT), polysaccharide lyases (PL), carbohydrate es-

terases (CE), carbohydrate-binding modules (CBM), S-layer

homology modules of the cellulosome (SLH), and auxiliary

activities (AA) (Lombard et al., 2014).We then used a linearmixed

model to assess differences in the abundances of each of the 7

CAZyme classes between AMY1H and AMY1L groups. We

observed a higher number of read counts for GH and PL classes

in AMY1L individuals (post hoc analysis; G, p = 0.0054; PL,

p = 0.030; Figures 7A and 7B), and a similar trend for AA and

CE classes (Figure S6). These enzyme classes are involved in

the breakdown of complex carbohydrates; their enrichment in

AMY1L individuals is consistent with the notion that a greater

proportion of complex carbohydrates reaches the distal gut in

AMY1L individuals.

Fecal SFCAs Relate to Salivary Amylase Activity
As an assessment of microbial metabolic output, we measured

levels of SCFAs in stool samples collected at all TPs. We used

machine learning to assess whether SCFAs levels were predic-

tive of AMY1-CN groups or SAA. Using the AMY1H0 and AMY1L0

group assignations, we trained a random forest model with 80%

of the SCFA measures to predict the AMY1 group to which the

remaining 20% belonged. The model achieved an accuracy of

70.37% with an MCC of 40.74% and an AUC of 77.8% (Fig-

ure S7). In agreement with AMY1-CN being positively correlated

with SAA, therewas a trend for SCFA concentrations to be higher

in the AMY1H0 (CN > 6) group.

Next, we performed a similar analysis in which we asked if

SCFAs could be used to predict subjects with high or low

mean SAA measurements. We determined high and low SAA

groups by performing k-means clustering for all 25 subjects; all

observations from the same subject were labeled with the sub-

ject’s SAA group. We achieved an accuracy of 83.61% with an

MCC of 64.46% and an AUC of 85.03% (Figure 7C). The total

concentration of SCFAs was the most informative element for

discriminating the high and the low SAA groups, followed by

the concentrations of butyrate, valerate, propionate, and acetate

(Figure 7D). Using a linear mixed model that included SAA group

as a covariate, we confirmed that the concentrations of the

SCFAs were higher in subjects with high SAA (adjusted p values:

total SCFA concentration = 4.7 3 10�2, acetate = 6.5 3 10�2,

propionate = 6.5 3 10�2, and butyrate = 4.7 3 10�2; valerate,

isovalerate, heptanoate, and hexanoate were not significantly

different). Assuming equal uptake of SCFAs in the colon across

subjects, these results suggest that the higher the host SAA,
Figure 5. Gut Microbiomes Differ between AMY1-CN Groups at the OT

(A) OTUs, identified using machine learning, that distinguish AMY1H and AMY1L

(B) Ribbon plot showing the OTUs identified using HARVEST that distinguish AMY

samples collected at the time points in bold print were also subjected to shotgu
the greater the SCFA production in the colon. Given that SAA

can vary from day to day for a given individual, the observation

that SAA is a better predictor of SCFAs than AMY1-CN indicates

that the microbiome’s metabolic output is sensitive to daily SAA

variation.

Fecal Transplants from AMY1H Donors into Germ-Free
Mice Promote Greater Adiposity Than Those from
AMY1L Donors
To gauge differences in function for AMY1H and AMY1L gut

microbiomes, we inoculated fecal samples obtained from

AMY1H and AMY1L donors, sampled at 5 TPs, into 96 male

Swiss-Webster 4- to 6-week-old germ-free mice fed a polysac-

charide-rich chow ad libitum and single-caged post-transfer.

Adiposity was assessed by DEXA after 4–6 weeks. Across all

mice, we observed a significantly higher body fat percentage

for recipients of the AMY1H compared to the AMY1L micro-

biomes (linear mixed model; p = 0.026). Post hoc pairwise

comparisons revealed that TPs 3, 7, and 10 showed a signifi-

cantly higher final adiposity for the AMY1H compared to the

AMY1L treatment groups (Tukey’s honest significant difference

[HSD] test adjusted p < 0.05), whereas TPs 4 and 9 did not

(after controlling for weight on the day of inoculation

and length of the experiment; Figures 7E–7I). Food intake

was not significantly different between high versus low

AMY1-CN donor groups, and there were no differences in

intestinal inflammation (measured by Lipocalin 2 at the end of

the experiments using samples from TPs 3 and 10; data not

shown). Thus, the AMY1H microbiomes generally drove higher

adiposity gains that were unrelated to food intake and meta-

bolic inflammation.

DISCUSSION

Here, we show that variation in the CN of the human salivary

amylase gene AMY1 influences the diversity and function of

the human oral and gut microbiome. AMY1-CN shapes the

carbohydrate milieu in the gut through its dose-dependent effect

on salivary amylase production. We observed a strong effect on

the composition of the oral microbiome and compositional and

functional effects on the gut microbiome that are consistent

with the type of complex carbohydrate depletion expected

from the host genotype.

We observed that host AMY1-CN impacted the oral micro-

biome in a diet-independent manner. Our month-long interven-

tion study included a 2-week diet standardization that ensured

subjects consumed carbohydrate-rich foods daily. The oral mi-

crobiomes, first to experience food intake, were unaffected by

the standardized diet period. They were, however, sensitive

to host AMY1-CN status and to SAA. Notably, compared to

AMY1L, AMY1H salivamicrobiomes exhibited higher proportions

of Porphyromonas spp. (e.g., P. endodontalis). Several members

of the genus Porphyromonas, including P. endodontalis, have

been associated with periodontitis (Socransky et al., 1998; Park
U Level

gut microbiomes. See legend for Figure 3.

1H and AMY1L groups at each time point. See legend for Figure 3. In addition,

n metagenomics analysis. See also Figure S5 and Tables S1 and S5.
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Figure 6. Metagenomes Indicate Convergence at the Gene Level
(A) Heat map displaying each of 481 gene families with abundances differing between AMY1H and AMY1L at one or more of six different TPs (n = 20). The heat

map is sorted by taxonomy, annotation group, and gene family. Each concentric circle in the heat map corresponds to a TP. Gene family abundances with

(legend continued on next page)
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Figure 7. AMY1H and AMY1L Gut Micro-

biomes Differ in Function

(A and B) Boxplots of the read counts in the AMY1H

and AMY1L groups for each of the significantly

different carbohydrate-active enzyme classes:

glycoside hydrolases (GH; A) and polysaccharide

lyases (PL; B) (n = 20).

(C) We used machine learning to assess whether

SCFA levels were predictive of SAA. Subjects were

clustered according to their salivary amylase activity

in two groups (SAA-H and SAA-L) by k-means

clustering (n = 25). Shown here is the receiver

operating characteristic (ROC) curve of a random

forest model used to predict the SAA group using

the SCFA measurements in a test dataset.

(D) The features used by the random forest model

for the classification of the test samples are shown

in decreasing order of importance given by the

mean decrease in Gini index. SCFA is the total of all

SCFAs. But, butyrate; Val, valerate, Pro, propionate;

Ace, acetate; Iso, isovalerate; Hex, hexanoate; Hep,

heptanoate.

(E–I) Boxplots of the adiposity measure normalized

by baseline weight on the day of inoculation of

formerly germ-free mice after humanization with

stool collected from the study participants at 5 time

points: (E) TP3; (F) TP4; (G) TP7; (H) TP9; (I) TP10.

*Tukey’s HSD adjusted p < 0.05. See also Figures

S6 and S7.
et al., 2015; Colombo et al., 2012; Wade, 2013; Griffen et al.,

2012; Cao et al., 2012; Lombardo Bedran et al., 2012). Many of

the same taxa were discriminatory for host SAA, across all sub-

jects and TPs assayed.

In contrast to the oralmicrobiomes, the standardizeddiet period

had a noticeable effect on gut microbiomes, particularly at the

functional level. Diet-driven convergence of gut microbiomes has

been observed previously (Muegge et al., 2011; Clayton et al.,

2016;Minot et al., 2011). Diet onset saw a spike inmobile-gene el-

ements similar to what has been described for stress responses
significant differences between AMY1 groups were identified using DESeq2, and the log2 fold difference b

heat map. Higher abundances of gene families in the AMY1H group are colored yellow, while those higher i

BH-adjusted p < 0.01 and that were assigned taxonomy are shown.

(B) Bray-Curtis distance between AMY1H and AMY1L metagenome samples (reads mapped to gene fami

(C) Number of significantly enriched gene families that could be grouped by function.

(D) Number of significantly enriched gene families at each time point.

(E) Taxonomy of significantly enriched gene families. See also Table S4.

Cell Hos
(Huddleston, 2014; Lerner et al., 2017).

Despite the convergence, differences in

gut microbiomes between high and low

AMY1-CN groups were maintained.

Members of the Ruminococcaceaewere

enriched in gut microbiomes of �50 sub-

jects with high predicted AMY1-CN and in

the intervened population. Members of

theRuminococcaceae family havebeen re-

ported to ferment resistant starch (Walker

et al., 2011; Salonen et al., 2014; Herrmann

et al., 2017; Moraı̈s et al., 2016; Ze et al.,

2012). HighAMY1-CN hostsmay preferen-
tially select for members of the Ruminococcaceae because of an

enrichment of resistant starch in chyme.

Host AMY1-CN was also related to the functional capacity of

the gut microbiome. Our metagenomic analysis revealed enrich-

ment in the AMY1L gut microbiomes of two classes of carbohy-

drate-active enzymes involved in the breakdown of overall com-

plex carbohydrates, GH, and polysaccharide lyases. These

results suggest that for a given diet, the AMY1L distal gut micro-

biota may be presented with a greater load of complex carbohy-

drates in general than the AMY1H microbiota. However, as a
etween AMY1H relative to AMY1L is depicted in the

n AMY1L are colored blue. Only gene families with a

lies; no taxonomic designation).
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result of greater average host SAA, resistant starch is a greater

proportion of the complex carbohydrates in the AMY1H colon,

and the corresponding fermenters are proportionally more

abundant.

We assessed functional output of AMY1H and AMY1L micro-

biomes with measures of SCFAs. SCFAs are fermentation prod-

ucts of distal gut microbiota, and their levels in stool are influ-

enced both by production by the microbiome and uptake by

the host. We observed that SCFAs in stool were associated

more strongly with host SAA levels than with host AMY1-CN.

Within an individual, SAA varies from day to day. Although

AMY1-CN is a good predictor of average SAA, it may be a

poor predictor of SAA on any given day. A better association

of SCFAs with SAA than to AMY1-CN indicates that fecal

SCFA pools reflect short-term fermentation dynamics in the

gut that are affected by fluctuating SAA. Sincemicrobiota known

to ferment resistant starch (e.g., Ruminococcaceae) are en-

riched in the AMY1H subjects, the activity of these microbiota

may be driving the higher levels of SCFAs in their stool (Topping

and Clifton, 2001).

Another way we tested the functional capacity of the gut mi-

crobiomes was to transfer fecal microbiota to germ-free mice

and assess adiposity differences for mice receivingmicrobiomes

of AMY1H compared to those receiving AMY1L microbiomes.

We transplanted human microbiomes 1:1 into mice and used 5

samples per subject.

The 5 transfer experiments are not exact replicates because

we used five separate samples collected at different TPs from

each donor, which takes into account daily variability in micro-

biomes. Overall, we observed a greater adiposity for mice recip-

ients of microbiomes derived from the AMY1H donors. Thus, the

daily fluctuation in the SAA and themicrobiomes was reflected in

the variance in functional output. Our findings suggest that the

mice (AMY1-CN = 2) consumed a diet rich in complex carbohy-

drates that human AMY1H-conditioned microbiomes may have

accessed better. Within their native human hosts, however,

AMY1H microbiomes may not behave the same way since

they are not decoupled from their high SAA environment, the

way they are when transferred to germ-free mice.

Prospectus
Selection for duplication at the AMY1 locus and lactase persis-

tence evolved around the Neolithic transition to an agrarian life-

style approximately 10,000 years ago. The strongest association

to date between the gut microbiota and human genetic variation

is related to the lactase persistence genotype (Goodrich et al.,

2016; Bonder et al., 2016; Blekhman et al., 2015). This study of

amylase CN further underscores how adaptation to new diets

that drove human genetic variation across populations also un-

derlies differences in modern-day microbiomes. In addition to

microbiome composition, the genetic differences between indi-

viduals that impact how common foods are digested may there-

fore be important to take into consideration in the emerging area

of personalized nutrition.
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DNA from Pan troglodytes cell line Coriell Institute for Medical Research:

NIGMS Human Genetic Cell Repository

NS06006

DNA from human lymphoblastoid cell line Coriell Institute for Medical Research:

NIGMS Human Genetic Cell Repository

NA10472

Saliva and stool samples from 25 participants in

month-long study with dietary intervention

This paper Not applicable

16S rRNA gene data from 1000 TwinsUK subjects Goodrich et al. (2016) European Bioinformatics Institute

accession number: ERP015317

Human genome SNP data from 1000 TwinsUK

subjects

Goodrich et al. (2016) http://twinsuk.ac.uk/resources-for-

researchers/access-our-data/

16S rRNA gene data from the intervention study This paper European Bioinformatics Institute

accession number: PRJEB27304,

Secondary accession: ERP109371

Metagenomic sequence data from the intervention

study

This paper European Bioinformatics Institute

accession number: PRJEB27308,

Secondary accession: ERP109376

Critical Commercial Assays

a-Amylase kinetic enzyme assay kit SALIMETRICS Cat# 1-1902

ELISA assay specific for AMY2 ALPCO Cat# K 6410

Experimental Models: Organisms/Strains

Germ Free Swiss Webster male mice Taconic SW-M

Oligonucleotides

AMY1-forward designed by AC Poole 5’-TGAGAACATTAGGCCACAGCA-3’

AMY1-reverse designed by AC Poole 5’-TGGAAATCATCTCAATGACCTCT-3’

EIF2B2-forward designed by AC Poole 5’-GCTCAAAGTGCTTGAGGACC-3’

EIF2B2-reverse designed by AC Poole 5’-CAAAGCCAAACCCAGACAAT-3’

AMY2A-forward designed by AC Poole 5’-TGGCGATGGGTTGATATTGCT-3’

AMY2A-reverse designed by AC Poole 5’-ACAAGCACAGTGAATTCCGC-3’

AMY2B-forward designed by AC Poole 5’-ACTAATGACCTGTGTTATACTTCCT-3’

AMY2B-reverse designed by AC Poole 5’-AGCTGTTACGCACAGTTCCA-3’

Taqman Copy Number Assay for AMY1, and

reference assay for RNase P

Life Technologies Id Hs07226361_cn and Human, 4403326

Software and Algorithms

SuperTracker, dietary intake analysis software Britten (2013) Discontinued

R, version 3.1.2 Bates et al. (2014) https://www.r-project.org/

Harvest, bivariate model used to identify OTUs with

differential abundances

Bar et al. (2014) Not applicable

DESeq2 Love et al. (2014) https://bioconductor.org/packages/

release/bioc/html/DESeq2.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ruth E.

Ley (rley@tuebingen.mpg.de).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Studies
We recruited volunteers affiliated with the Cornell University campus in Ithaca, New York by way of flyers and listservs. We used the

following exclusion criteria: BMIR 35 or% 18; age < 18 or > 40; usage within the last six months of amylase inhibitor, systemic anti-

biotic, corticosteroid, immunosuppressant agent, or probiotic supplement; gastrointestinal disorders. All human-related procedures,

sample, and data collection were approved by the Cornell University Institutional Review Board, protocol number 1106002281. The

eligibility criteria are listed as Data S1. Informed consent was obtained from all participants.

Germfree Mouse Studies
All mouse-related protocols, sample, and data collection were approved by the Cornell University Institutional Animal Care and Use

Committee, protocol number 2010-0065. We inoculated germfree Swiss Webster adult male mice between 4-6.5 weeks of age with

stool samples collected at 5 TPs (3, 4, 7, 9, and 10) (Table S2). Eachmouse experiment used stool samples from all 9 AMY1L donors.

TP 3 had 11 AMY1H donors while all other TPs used sample from 10 AMY1H donors.

At the beginning of each experiment, mice were weight-ranked and then assigned alternately to an AMY1L or AMY1H donor to

ensure that the mean weight on the day of inoculation was not different between the 2 groups. Stool suspension was prepared in

a Coy anaerobic chamber. Approximately 500mg frozen stool was solubilized in 10ml of anoxic PBS that contained 2mMdithiothrei-

tol as a reducing agent, and vortexed at 5 minute intervals until no soluble clumps were visible. Each mouse was orally gavaged with

200 ml stool suspension from one human subject and single-housed. After inoculation, mice were maintained on autoclaved water

and autoclaved Teklad diet 7017, NIH-31 (Harlan Laboratories) and kept under a 12-hour light/dark cycle for 33-40 days (TP 3:

40 days; TP 4: 35 days; TP 7: 35 days; TP 9: 33 days; and TP 10: 35 days.) Mouse weight and chow consumption were recorded

weekly. At the end of each experiment, mice were DEXA scanned (Lunar PIXImus Mouse, GE Medical Systems, Waukesha, WI)

to measure adiposity.

METHOD DETAILS

Initial AMY1-CN Screen
We screened 105 individuals on the Cornell University campus for AMY1-CN. We collected buccal cells by instructing subjects

to swab the inside of their cheek with Epicentre Catch-All Sample Collection Swabs. Genomic DNA was extracted using the

Qiagen Gentra Puregene Buccal Cell Kit. qPCR was performed using the same primer sequences for AMY1 and TP53 designed

by Perry et al. with the following conditions: 2ng of DNA was used in 25ml reactions with Applied Biosystems Power SYBR

Green PCR Master Mix on a BioRad MyiQ iCycler Single Color Real-Time PCR Detection System (Perry et al., 2007). The

PCR protocol was as follows: initial denaturation at 95�C for 10 minutes and 40 cycles of 95�C for 15 seconds followed by

58�C for 30 seconds. All reactions, including standards, were performed in triplicate. These primers are known to anneal to

both human and chimp AMY1 gene sequence. Two control sample DNAs with known copy number were run on every plate.

The control samples, NS06006: chimp DNA with AMY1-CN of 2 and NA18972: human DNA with AMY1-CN of 18 (Carpenter

et al., 2015; Perry et al., 2007), were purchased from the Coriell Institute for Medical Research NIGMS Human Genetic Cell

Repository and NHGRI Sample Repository for Human Genetic Research. To calibrate each subject’s CN, the ratio of AMY1

to TP53 levels was used in a line equation created using the ratios from the two control DNA samples resulting in an adjusted

copy number value.

AMY1-CN Confirmation
A second cheek swab was taken from each subject to confirm the AMY1-CN. Genomic DNA was isolated as described above. We

performed qPCR after designing a new set of primers to amplify the AMY1 paralogs,

AMY1-forward: 5’-TGAGAACATTAGGCCACAGCA-3’ and AMY1-reverse:

5’-TGGAAATCATCTCAATGACCTCT-3’. We also designed primers to use EIF2B2 as a reference gene, EIF2B2-forward:

5’-GCTCAAAGTGCTTGAGGACC-3’, EIF2B2-reverse: 5’-CAAAGCCAAACCCAGACAAT-3’. Primer concentrations were at 0.5 mM,

and 5ng of DNA template per reaction were used in 10ml reactions with Roche LightCycler 480 SYBR Green I Master mix. Both

AMY1 and EIF2B2 were run on the same plate, and the PCR program was as follows: initial denaturation at 95�C for 5 minutes

and 40 cycles of 95�C for 10 seconds followed by 60�C for 30 seconds on a Roche LightCycler 480 Real-Time PCR Instrument.

A standard curve was made using DNA NA10472. Reactions were performed in triplicate, and the control DNAs NS06006 and

NA18972 were run on every plate. To calibrate each subject’s CN, the ratio of AMY1 to EIF2B2 levels was used in a line equation

created using the ratios from the two control DNA samples resulting in an adjusted copy number value.

Digital PCR was performed using Life Technologies Taqman Copy Number Assay Id Hs07226361_cn for the AMY1 locus and

TaqMan Copy Number Reference Assay, RNase P, Human, 4403326 to normalize for total DNA. Reactions were run on a Life

Technologies QuantStudio3D Digital PCR system in duplicate. In statistical analyses (below) we used the mean of the values gener-

ated by qPCR and by digital PCR for each subject as the AMY1-CN value for that subject.
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AMY2 CN Determination
We determined the CN of the pancreatic amylase locus, AMY2, by performing qPCR with an independent primer pair for each

paralog (AMY2A, and AMY2B), AMY2A-forward: 5’-TGGCGATGGGTTGATATTGCT-3’, AMY2A-reverse: 5’-ACAAGCACAGT

GAATTCCGC-3’, AMY2B-forward:

5’-ACTAATGACCTGTGTTATACTTCCT-3’, and AMY2B-reverse:

5’-AGCTGTTACGCACAGTTCCA-3’. We also used the aforementioned primers for EIF2B2 as a reference gene on the same qPCR

plate with each AMY2 paralog. Primers were at 0.5 mM, and 2ng of DNA template per reaction were used in 10ml reactions with Roche

LightCycler 480 SYBRGreen I Master mix. EIF2B2was run on the same plate with each AMY2 paralog, and the PCR programwas as

follows: initial denaturation at 95�C for 5 minutes and 40 cycles of 95�C for 10 seconds followed by annealing temperature for

10 seconds and 72�C for 15 seconds on a Roche LightCycler 480 Real-Time PCR Instrument. Annealing temperature was 58�C
for AMY2A and 60�C for AMY2B. Reactions were performed in triplicate.

Study Design and Sample Collection
Based on the qPCR results above, we enrolled the 25 people at the upper and lower ends of the distribution to participate in a 4-week

study. Metadata about the participants, including gender and age, are described in Table S3. The majority of the participants in this

study were female. There are not enough participants of either gender to run the analyses restricted to one gender with the same

statistical power. Previous work has suggested that person-to-person variation in microbiomes is not well explained by gender

(Human Microbiome Project Consortium 2012). For the first and fourth weeks, participants were instructed to consume their usual

diet and record all food and drink intake with approximate amounts. The dietary intervention occurred during weeks 2 and 3. On three

days of each of the four weeks, the subjects provided stool and saliva samples for a total of 12 TPs. With few exceptions, all saliva

sampleswere collected on the same day for every subject at each of the twelve TPs. Subjectswere instructed to allow saliva to pool in

the mouth for three minutes and then express through 5cm drinking straws into a 1.5ml eppendorf tube. Saliva was vortexed and

aliquoted into two tubes and chilled on ice until stored at -80�C within 4 hours of collection. Stool samples were collected during

a three-day window for each TP. One subject left the study after two weeks, thus only providing samples for TPs 1 through 6. On

day 12 of the study, DEXA scanning was performed on 23 of the subjects using a Hologic DEXA, Model: DISCOVERY-A at Cornell

University’s Human Metabolic Research Unit.

Dietary Intervention and Intake Analysis
Duringweeks 2 and 3, participants were provided all meals and snacks from amenu designed by a registered dietetic technician. This

diet featured healthy meals and snacks and a high-starch food item in every meal. The diets were designed to provide enough

calories for an adult male. We collected daily caloric intake estimates from the participants before the beginning of the study. Based

on this information, we were prepared to provide an additional portion of eachmeal as requested by participants. Participants did not

all consume the entire volume supplied. During the dietary intervention, participants consumed one meal at Cornell University’s

Human Metabolic Research Unit dining room in the presence of lab personnel and took two meals away. A researcher from this

project took weekday lunches with the participants, and made observations as to the way participants approached the food (e.g.,

ate very much, very little, avoidance, etc.) On Fridays, participants consumed one meal and took away all meals and snacks

packaged for the weekend.

For each of the 25 subjects, individual dietary records of their reported intake for the entire 4 weeks of the study were entered into

the diet analysis software SuperTracker (Britten, 2013), and individual reports were generated regarding macronutrient and micro-

nutrient content (Data S2). SuperTracker food nutrition data is based on the Food and Nutrient Database for Dietary Studies (FNDDS),

and the Food Patterns Equivalents Database (FPED), both from the USDA/ARS Food Surveys Research Group. The software reports

categories entitled carbohydrate, dietary fiber, total sugars, and added sugars. Starch is analyzed using the AOACmethod 966.11 or

979.10 (2012) or by a polarometric method (The Feedings Stuffs Regulations 1982), but there is not a separate category reported in

the SuperTracker output. Total dietary fiber content is determined by enzymatic-gravimetric methods 985.29 or 991.43 of the AOAC

(2012). However, the dietary fiber information provided does not distinguish between specific types of fiber including insoluble,

soluble, resistant starches and non-starch polysaccharides.

Salivary Amylase Activity
Salivary amylase activity wasmeasured for each saliva sample in triplicate using the SALIMETRICS a-Amylase kinetic enzyme assay

kit (cat 1-1902) as per the instructions with one modification: Instead of 320ml, 300ml of pre-heated substrate was added to the

sample. Reactions were performed in triplicate.

Stool Sample Processing
Subjects provided two stool sample aliquots from a single bowel movement in separate tubes and stored them in insulated bags

containing frozen ice packs then stored at -80�C. One of these aliquots was later freeze dried prior to DNA extraction, while the other

was saved for use in the amylase activity assay and germfree mouse inoculation studies. At each TP from each subject, one of the

stool sample aliquots was freeze dried in a 50ml conical tube and then homogenized by roll-milling in the following manner. After
Cell Host & Microbe 25, 553–564.e1–e7, April 10, 2019 e3



pressing three stainless steel rods (2 different sizes: 9 cm long x 0.9 cm diameter and 9 cm long x 0.3 cm diameter) into the freeze

dried sample, the 50ml conical tubes were rolled on a Triple Gallon Tumbler (Covington, cat # 253TUM) for 24-48 hours.

Stool Amylase Activity
We used the SALIMETRICS a-Amylase kinetic enzyme assay kit (cat # 1-1902) to measure amylase activity in frozen samples

collected during the human studies. We added approximately 150 mg of frozen stool to MOBIO garnet bead tubes with 0.70mm

garnet beads (cat # 13123-50). We added enough Salimetrics kit diluent to obtain a concentration of 0.3g stool/ml diluent. Samples

were placed in a BioSpec 1001 Mini-Beadbeater-96 for 2 minutes and then centrifuge at 1500 rcf for 15 minutes. We transferred the

supernatant into an eppendorf tube and starting with 25ml of undiluted supernatant, performed three serial dilutions up to 1 in 200

using Salimetrics diluent. Then we proceeded with the assay as described above. We noted that 11 subjects (7 AMY1H and 4

AMY1L) had a median FAA< 10 U/g across all TPs.

AMY2 ELISA
We used an ELISA that employs two monoclonal antibodies to human pancreatic amylase as per the instructions (ALPCO, cat # K

6410). As a control, we used purified a-Amylase from Bacillus licheniformis (Krackeler Scientific, cat #A3403-500KU) in both the

AMY2 ELISA and amylase activity assays. Amylase activity from Bacillus licheniformis was detected in the amylase activity assay,

but the ELISA assay specific for AMY2 did not detect this microbial amylase.

Short Chain Fatty Acid Measurements
Short chain fatty acid quantification in stool samples was performed by the Metabolomics Core at the University of Michigan using

cold extraction of short chain fatty acids, measured by EI GC-MSwithout derivatization on�40-60mg stool from all of the TPs. Short

chain fatty acid measurements were normalized to the wet weight of the samples. The short chain fatty acids detected and quantified

were acetate, butyrate, propionate, isovalerate, valerate, heptanoate, and hexanoate. Samples were run over two days. There was

slight instrumental drift while running the second batch so the LOESS correction method was applied to those data.

Community Composition Based on 16S rRNA Genes
The saliva samples used in enzyme activity measures, from all TPs except 2, 7, and 10, and all fecal samples, were profiled for

microbial community diversity and composition (Table S2). Microbial community DNA was extracted from the freeze dried stool

and saliva samples using the MO BIO PowerSoil-htp Soil DNA Isolation Kit (MO BIO Laboratories, cat # 12955-4), but instead of

vortexing, samples were placed in a BioSpec 1001Mini-Beadbeater-96 for 2 minutes. We used 10-50 ng of sample DNA in duplicate

50 ml PCR reactions with 5 PRIME HotMasterMix and 0.1 mM forward and reverse primers. We amplified the V4 region of 16S using

the universal primers 515F and barcoded 806R and the PCR program previously described (Caporaso et al., 2011) but with 25 cycles.

We purified amplicons using the Mag-Bind E-Z Pure Kit (Omega Bio-tek, cat # M1380) and quantified with Invitrogen Quant-iT

PicoGreen dsDNA Reagent, and 100 ng of amplicons from each sample were pooled and paired end sequenced (2x250bp) on an

Illumina MiSeq instrument. Saliva samples from 3 of 12 TPs were not successfully processed although we did obtain measurements

of salivary enzyme activity.

Sequence data were analyzed using the QIIME software package 1.9.0 (Caporaso et al., 2010). Briefly, paired ends were joined

using fastq-join, and sequences were demultiplexed and filtered using a Phred quality score threshold of greater than or equal

to 25. Open reference OTU picking was performed on all sequence data from oral and gut samples using the uclust method and

the August, 2013 Greengenes 16S rRNA Gene Database as reference sequences. We used the QIIME 1.9.0 open reference OTU

picking pipeline with all default parameters except the following: max_accepts = 20, max_rejects = 500, stepwords = 20, and

word_length = 12. Samples with a sequence count below 10,000 were excluded from downstream analyses. After exclusion, the

oral dataset consisted of 216 samples (sequencing was performed on 9 of the 12 TPs collected) yielding 16,030,493 sequences

with amedian sequence count of 72,107. The fecal data set included 293 samples with a total of 16,421,608 sequences and amedian

sequence count of 55,165 sequences per sample.

We calculated beta diversity using the unweighted and weighted UniFrac metrics on an OTU table containing 11,146 and 20,133

sequences per sample for the oral and gut datasets, respectively, and performed principal coordinates analysis on the distance

matrices (Lozupone et al., 2007). We assessed alpha diversity using Chao 1, Observed Species, Faith’s phylogenetic diversity,

and Shannon’s Index (Magurran, 2004; Southwood and Henderson, 2009) by calculating means from 100 iterations using a rarefac-

tion of 11,146 and 16,848 sequences per sample for the oral and gut datasets, respectively.

Metagenomics Library Sequencing and Analysis
We performed metagenomic analysis on sequences generated from genomic microbial DNA obtained during the DNA extraction

method detailed above using the freeze dried stool samples collected at TPs 3, 4, 6, 7, 9, and 10 (Table S2). We prepared metage-

nomic libraries using 1 ng of DNA input per sample into a Nextera XT DNA Sample Preparation Index Kit as per the instructions (Illu-

mina, cat # FC-131-1096). After purification with Agencourt AMPure XP beads (Beckman Coulter, cat # A63882), samples were

normalized and pooled with 20 samples per pool. Size selection was performed on the pools using BluePippin (Sage Sciences,

cat # BDF1510) to restrict fragment sizes between 300 to 650 bp. Pools were run on an Illumina HiSeq3000 with 2x150 bp paired

end sequencing for a sequencing depth of 14 ± 3.0 Gb (median ± standard deviation).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Estimation of AMY1 CN in British Population
Included in the British genotype data were 7 of the 10 SNPs, rs 6696797, rs 10881197, rs 1999478, rs 11185098, rs 1930212, rs

1566154, and rs 1330403, previously correlated with AMY1 CN (Usher et al., 2015). Only one randomly chosen twin per pair was

included in our analysis. After excluding subjects with a BMI outside of that used to screen our Cornell population, we had data

for 994 British subjects. Using the change in copy number values determined for the GoT2D cohort of 2,863 Europeans, we calcu-

lated the sum of the change in copy number values for each individual using the methods of Usher et al., wherein each of the seven

alleles is associated with a difference in AMY1 copy number of a given amount (Usher et al., 2015). For each person, we added the

values in the table for the alleles present in that person’s genome. We then selected only the tail ends of the distribution to include the

lowest 5% and highest 5% of individuals for group sizes of 50 each.

Dietary Intervention in Cornell Population
We excluded the AMY1M group from all statistical analyses that include AMY1 group as a covariate but included them in all analyses

withAMY1-CN as a covariate.We used logarithm, square root or rank transformation as needed to bettermeetmodel requirements of

homogeneous varianceandnormalityof residuals, ε. All linearmixedmodelsaredescribedwith thenotationused in the statistical pack-

age lme4 in R, version 3.1.2 (Bates et al., 2014). The Scikit-Learn library in Python was used in the machine learning based modeling.

Macronutrient Intake Analysis
Dietary records from all subjects were manually entered into the nutritional analysis software SuperTracker, which produces nutrient

reports that include estimated percentages of macro- and micronutrient content in the food items entered by the user. We fit linear

mixed models using each macronutrient percentage as the response variable to determine whether or not dietary intake differed

between the AMY1 CN groups over time. We analyzed two separate models that either included study day or whether or not diet

was being provided on that day:
y � AMY1CNG + DAY + AMY1CNG:DAY + (1jSUBJECT) + ε
 [1]
y � AMY1CNG + DIET + AMY1CNG:DIET + (1jSUBJECT) + ε
 [2]

y is the macronutrient percentage. Fixed effects included AMY1CN group (AMY1CNG) and study day (DAY) or whether or not diet

was being provided on that day (DIET). We also included a random effects term for repeat sampling of subjects (1jSUBJECT).

Salivary Amylase Activity Linear Mixed Models
We analyzed two separate models that included either AMY1 CN or AMY1 CN group as a predictor:
y � AMY1CNG + TP + AMY1CNG:TP + (1jSUBJECT) + ε
 [1]
y � AMY1CN + TP + AMY1CN:TP + (1jSUBJECT) + ε
 [2]

y is the salivary amylase activity. Fixed effects included AMY1CN group (AMY1CNG) or AMY1CN (AMY1CN; included subjects in

the AMY1M group), and TP (TP). We also included a random effects term for repeat sampling of subjects (1jSUBJECT).
Neither the interaction between AMY1CN group and TP nor AMY1CN and TP is significant and nor is the effect of TP significant in

either model. The effect of both AMY1 CN (p = 2.1x10-5) and AMY1 CN group (p = 1.9x10-4) are significant based on an F-test with a

Satterthwaite approximation.

Effects of Diet on Distance Metrics
For 16S rRNA gene sequence data, we compared UniFrac distances (both unweighted andweighted) between individuals in high and

low AMY1 groups during 3 time intervals: pre-diet, on the diet, and post-diet. For shotgun metagenomic sequences, we compared

Bray Curtis distances between individuals in high and low AMY1 groups using the gene family raw counts but only had data for TPs

during two time intervals: pre-diet and on the diet. We calculated the non-parametric bootstrap confidence intervals for the difference

in populationmeans between the Bray-Curtis distances (just AMY1L versus AMY1Hdistance values) for pre-diet and during-diet time

points. We determined the 95% bootstrap CIs based on 1000 permutations. This approach accounts for non-independence issues

caused by repeat sampling from individuals.

Alpha Diversity Linear Mixed Models
For both stool and saliva samples, we used a linear mixed model to assess the effect of AMY1-CN or AMY1-CN group on alpha

diversity:
y � AMY1CN + TP + AMY1CN:TP + (1jSUBJECT) + ε
 [1]
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y � AMY1CNG + TP + AMY1CNG:TP + (1jSUBJECT) + ε
 [2]

y is the alpha diversity metric. Fixed effects included AMY1 CN group (AMY1CNG; excluded AMY1M) or AMY1 CN (AMY1CN;

included subjects in the AMY1M group) and TP (TP). We also included a random effects term for repeat sampling of subjects

(1jSUBJECT). Whenever the interaction term of the linear mixed model was significant, we identified the affected TPs by performing

post-hoc pairwise comparisons between the TPs using Tukey’s HSD method to adjust for multiple comparisons.

OTUs with Differential Relative Abundance
We used a bivariate model called Harvest (Bar et al., 2014) to identify OTUs with differential means or variances in relative abundance

between the AMY1H and AMY1L groups at each TP separately. For this analysis we omitted OTUs not present in at least half of the

samples in either the AMY1L or the AMY1H group at the TP being considered. We adjusted p values using the Benjamini-Hochberg

procedure to account for all OTUs tested at a given TP.

Stool amylase Activity Linear Mixed Models
We used a linear mixed model to assess the effect of AMY1 CN, AMY2 CN, or AMY1

CN group on stool amylase activity using the following models:
y � AMY2CN + TP + AMY2CN:TP + (1jSUBJECT) + ε
 [1]
y � AMY1CN + TP + AMY1CN:TP + (1jSUBJECT) + ε
 [2]
y � AMY1CNG + TP + AMY1CNG:TP + (1jSUBJECT) + ε
 [3]

y is the stool amylase activity. Fixed effects included AMY1 CN (AMY1CN; included subjects in the AMY1M group), AMY2 CN

(AMY2CN; included subjects in the AMY1M group), or AMY1 CN group (AMY1CNG; excluded AMY1M group), and TP (TP). We

also included a random effects term for repeat sampling of subjects (1jSUBJECT).
In model [3] we determined that stool amylase activity at TP 6 was significantly greater than TP 12 by performing post-hoc pairwise

comparisons between the TPs using Tukey’s HSD method to adjust for multiple comparisons.

Metagenomics Analysis
For metagenomic read quality control, we used skewer v0.2.2 (Jiang et al., 2014) to trim the 3’ ends until quality scores reachedR15,

and end-trimmed reads <100 bp were removed. The software skewer v0.2.2 was also used to remove Illumina adapter contamina-

tion, and bbmap v37.78was used to filter out human host genome reads. Post-QC readswere subsampled at 20,000,000 paired-end

reads per sample to normalize for sequencing depth and reduce downstream processing time. Across the entire read length used in

the analysis, themedian Phred scorewas greater than 30.We used the HMPUnifiedMetabolic Analysis Network (HUMAnN2 v0.11.1)

pipeline to classify the reads against the ChocoPhlAn and UniRef90 databases (Abubucker et al., 2012). For our statistical analyses,

we used the gene families file with the abundances normalized to reads per kilobase (RPKs). However, DESeq2, the software that we

used to identify gene families with differential abundances between AMY1 groups, requires integer values, or counts that have not

been normalized with respect to library size, as a requirement of the statistical model because the DESeq2 software adjusts for dif-

ferences in library size internally (Love et al., 2014). To accommodate this requirement, wemultiplied the RPKs reported byHUManN2

by the gene lengths and total number of reads in order to obtain integers unadjusted for library size. The gene families file produced by

HUMAnN2 is stratified; for each gene family there are one or more rows with the first row being the total number of reads assigned to

that gene family and the additional rows corresponding to the number of reads assigned to each of the different taxonomy, i.e. spe-

cies, when known. Therefore, the raw data contains entries that are not independent. We removed the entry reporting the sum of the

mappings assigned to the gene family prior to analysis and kept the mappings to species including unclassified.

We also filtered out gene families not present in at least half of the samples in either the AMY1L or the AMY1H group in the dataset.

Then we identified the differentially abundant gene families at each TP using DESeq2 and used the log2 fold change between AMY1H

andAMY1L for eachgene family to create aheatmap.Weadjustedpvaluesusing theBenjamini-Hochbergprocedure toaccount for all

gene families tested at a given TP and displayed gene families with BH-adjusted p values < 0.01. Furthermore, the heatmap includes

only gene familieswith assigned taxonomyand is sorted by taxonomy.When agene family is not significant at a TP, the corresponding

heatmap cell is colored gray. The heatmap in Figure 6 was created using the software iTOL with gene families ordered by taxonomy.

Carbohydrate-Active enZYmes Analysis
We used hmmscan to query the gene families with HMMs from dbCAN (release 6.0), and used an e-value cutoff of 1e-18 to positively

identify CAZymes.

We used linear mixed models to determine whether the number of read counts from any of the CAZyme classes differed between

the AMY1H and AMY1L groups (N=20).
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y� AMY1CNG +CAZYCLASS + TP + AMY1CNG:TP + AMY1CNG:CAZYCLASS + CAZYCLASS:TP + AMY1CNG:CAZYCLASS:TP +

(1jSUBJECT) + ε

y represents the number of read counts, and fixed effects are AMY1 CN group (AMY1CNG), TP (TP), and CAZyme class

(CAZYCLASS). We also included a random effects term for repeat sampling of subjects (1jSUBJECT).

Determination of SAA Groups
Each of the 25 participants were labeled as amember of either SAA-H or SAA-L group. These labels were assigned using the KMeans

clustering module in the Scikit-Learn library in Python, which implements the k-means algorithm, and was parameterized to identify

two clusters within the mean salivary amylase activity measurements.

OTUs Distinguishing SAA Groups
For both saliva and stool samples, using phyloseq v1.22.3, we filtered out OTUs with an average relative abundance below 0.001%.

This screening produced two data sets composed of 216 salivary and 283 fecal samples with 672 and 900 taxa, respectively.

Samples were labeled according to the salivary amylase activity level assigned to its subject of origin. For the machine learning

analysis, the OTUs were considered features, and the salivary amylase activity level (high or low) as the response variable. We

used caret v6.0 to create a partition with 80% of the samples for training, and the remaining 20% for testing purposes. Then, we

executed a random forest model on the training data set using the randomForest v4.6 package, adjusting the number of trees to

200 and enabling the flag to calculate the feature importances. Feature selection was done using Boruta v5.2.0 with default

parameters on the training data set (after excluding, or not, OTU abundance measures coming from subjects originally placed in

the AMY1M group). All the OTUs confirmed as important or tentative were treated as relevant, resulting in 113 for saliva and 301

for feces. To examine the predictive power of the model, we used the caret package and trained two random forest models with

default parameters, one removing the relevant OTUs, and the other with only same relevant OTUs.

Predicting SAA with SCFA Levels in Stool
The dataset was divided in two subsets, one for the training process with 266 records, and another with 54 records for testing

purposes. A RandomForestClassifier object was configured to use 250 estimators to predict the SAA group of each sample.

Once the classifier was trained, its predictive performance was assessed using the following statistics: the F1 score, which

represents the harmonic average of the precision and recall, and the Matthews correlation coefficient. To visualize the classification

results, we generated a confusion matrix and a receiver operating characteristic (ROC) curve. Finally, the importance of features was

calculated from the Gini impurity criteria used by the classifier to evaluate the quality of the resulting decision trees.

For the linear mixed models, SCFA concentrations were used as response variables and the SAA group as the predictor. The

subjects and TPs were included as random effects (due to the fact that they were not taken into account in the random forest anal-

ysis). An ANOVA was then performed on each model to evaluate the differences in concentrations between SAA groups. The models

were the following:

y � SAA-group + (1j TP/SUBJECT) + ε

with y being the concentration of acetate, propionate, butyrate, valerate, iso-valerate, heptanoate, and hexanoate alone, and then

their sum:

Total SCFA concentrations = [But]+[Val]+[Pro]+[Ace]+[Iso]+[Hex]+[Hep]

The p-values from all of the models were corrected using the BH correction method.

Assessment of Adiposity in Mice
We used a linear mixedmodel to determine whether adiposity differed between AMY1H and AMY1Lmicrobiome recipients using the

following equation:

y � AMY1CNG + TP + AMY1CNG:TP + w0 + duration + (1jDONOR) + ε

y is the percent fat determined by DEXA, and effect terms includeAMY1CNgroup, time point, weight on the day of inoculation, and

duration or length of experiment (AMY1CNG, TP,w0, duration), and we included a random term for human donor. We identified the

affected TPs by performing post-hoc pairwise comparisons between the TPs using Tukey’s HSD method to adjust for multiple

comparisons.

DATA AND SOFTWARE AVAILABILITY

The 16S rRNA gene and metagenomic sequence data obtained from the intervention study have been deposited in the European

Nucleotide Archive with accession IDs PRJEB27308 and PRJEB27304.
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