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Abstract

Background: Several candidate genes have been identified in relation to lipid metabolism, and among these,
lipoprotein lipase (LPL) and apolipoprotein E (APOE) gene polymorphisms are major sources of genetically
determined variation in lipid concentrations. This study investigated the association of two single nucleotide
polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common APOE haplotype (two SNPs)
with blood lipids, and examined the interaction of these SNPs with dietary factors.

Methods: The population studied for this investigation included 660 individuals from the Prevention of Cancer by
Intervention with Selenium (PRECISE) study who supplied baseline data. The findings of the PRECISE study were
further replicated using 1238 individuals from the Caerphilly Prospective cohort (CaPS). Dietary intake was assessed
using a validated food-frequency questionnaire (FFQ) in PRECISE and a validated semi-quantitative FFQ in the CaPS.
Interaction analyses were performed by including the interaction term in the linear regression model adjusted for
age, body mass index, sex and country.

Results: There was no association between dietary factors and blood lipids after Bonferroni correction and
adjustment for confounding factors in either cohort. In the PRECISE study, after correction for multiple testing, there
was a statistically significant association of the APOE haplotype (rs7412 and rs429358; E2, E3, and E4) and APOE
tagSNP rs445925 with total cholesterol (P = 4 × 10− 4 and P = 0.003, respectively). Carriers of the E2 allele had lower
total cholesterol concentration (5.54 ± 0.97 mmol/L) than those with the E3 (5.98 ± 1.05 mmol/L) (P = 0.001) and E4
(6.09 ± 1.06 mmol/L) (P = 2 × 10− 4) alleles. The association of APOE haplotype (E2, E3, and E4) and APOE SNP
rs445925 with total cholesterol (P = 2 × 10− 6 and P = 3 × 10− 4, respectively) was further replicated in the CaPS.
Additionally, significant association was found between APOE haplotype and APOE SNP rs445925 with low density
lipoprotein cholesterol in CaPS (P = 4 × 10− 4 and P = 0.001, respectively). After Bonferroni correction, none of the
cohorts showed a statistically significant SNP-diet interaction on lipid outcomes.

Conclusion: In summary, our findings from the two cohorts confirm that genetic variations at the APOE locus
influence plasma total cholesterol concentrations, however, the gene-diet interactions on lipids require further
investigation in larger cohorts.
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Background
Cardiovascular diseases (CVD) are common multifactor-
ial conditions characterized by dyslipidaemia, type 2 dia-
betes and hypertension [1, 2]. Elevated triacylglycerol
(TAG) and reduced high density lipoprotein cholesterol
(HDL-C) concentrations are associated with an in-
creased risk of developing CVD [3–5]. Furthermore, sev-
eral studies have reported that certain genetic variants
influence susceptibility to altered circulating lipid con-
centrations, leading to an increased risk of CVD events
[6–8]. Genetic variations have been shown to be associ-
ated with lipid outcomes, while dietary factors appear to
modulate the effect of such genes on lipid concentra-
tions [9, 10]. Previous studies have shown that single nu-
cleotide polymorphisms (SNPs) of the apolipoprotein E
(APOE) [6, 11] and lipoprotein lipase (LPL) [12–14]
genes contribute to significant variation in lipid
concentrations.
The APOE protein plays a key role in the transport

and metabolism of cholesterol and TAG containing par-
ticles by serving as a receptor-binding ligand that medi-
ates the clearance of dietary derived chylomicrons, and
hepatically derived very low density lipoprotein (VLDL)
and their remnants from the circulation [6]. The three
most recognized alleles of the APOE gene are E2, E3 and
E4, with carriage of E4 associated with CVD risk factors
and increased low density lipoprotein cholesterol (LDL-
C) concentrations [11, 15, 16], and hence increased
CVD risk [17, 18].
Genetic variations in the LPL gene have been reported

to be involved with lipid metabolism and partly explain
the phenotypic variation in blood lipid levels [19]. LPL is
a lipolytic enzyme that catalyses hydrolysis of TAG in all
of the major classes of TAG-rich lipoproteins [20]. High
enzyme activity is associated with favourable lipid levels,
including relatively low TAG concentrations [21]. The
two most widely studied LPL SNPs, rs328 (S447X) and
rs320 (HindIII) [22, 23]. The ‘G’ minor alleles of both
the SNPs, rs328 and rs320, are associated with decreased
TAG concentrations and increased HDL-C concentra-
tions, whereas the opposite association was found for
the ‘C’ allele and ‘T’ allele respectively [24–26].
Data from several studies supports the role of genetic

factors in lipid metabolism [27]; however, only a few
studies have examined the effects of lifestyle factors such
as diet on the association of polymorphisms with lipid-
related outcomes [10, 28, 29]. Therefore, the present
study aimed to investigate the effect of seven APOE
tagSNPs (rs405509, rs769450, rs439401, rs445925,
rs405697, rs1160985, and rs1064725), one APOE haplo-
type (rs7412 and rs429358), and two commonly studied
LPL SNPs (rs328 and rs320) on blood lipid profile in
660 participants (baseline data) from the Prevention of
Cancer by Intervention with Selenium (PRECISE) study.

As diet type and intake is also known to modify lipid
levels [30–32], the potential impact of the interaction
between these SNPs and dietary factors on lipid levels
was also investigated. To confirm the findings, the Caer-
philly Prospective Study (CaPS; n = 1238) was used as a
replication cohort.

Methods
PRECISE cohort
Participants and methods
Baseline data of 660 individuals from the PRECISE
study, conducted in two populations [UK (n = 468) and
Denmark (n = 192)] were used for the analysis [33, 34].
Briefly, study participants were selected from four gen-
eral practices (study centres) in various areas of the UK
that were affiliated with the Medical Research Council
General Practice Research Framework (MRC GPRF). Be-
tween June 2000 and July 2001, research nurses re-
cruited similar numbers of men and women from each
of three age groups: 60–64, 65–69 and 70–74 years. The
Danish participants were men and women recruited
from the same three age groups from the County of
Funen in Denmark.
The UK study obtained approval from the appropriate

UK Local Research Ethics Committees [South Tees (ref:
99/69), Worcestershire Health Authority (ref: LREC 74/
99), Norwich District (ref: LREC 99/ 141), Great Yar-
mouth and Waveney (under reciprocal arrangements
with Norwich District LREC)], and the participants pro-
vided written informed consent. The regional Danish
Data Protection Agency and Scientific Ethical Commit-
tees of Vejle and Funen counties approved the Danish
study (Journal number. 19980186).

Dietary information
Information about each participant’s usual dietary intake
was obtained using validated EPIC food frequency ques-
tionnaires (FFQ) [35]. Total energy intake and macronu-
trient composition were analysed using the FETA
software program [36].

Anthropometric measurements and biochemical analysis
Body mass index (BMI) was calculated as body weight in
kilograms divided by height in square metres (kg/m2).
Participants provided non-fasting blood samples for bio-
chemical analysis and these samples were stored at − 80 °C.
Total cholesterol and HDL-C concentrations in lithium-
heparin plasma were measured using an Architect c16000
analyser (Abbott) with dedicated reagents. Measurements
were performed by enzymatic colorimetric analysis. Trace-
ability for total cholesterol and HDL-C was ensured
through participation in the National Reference System for
Cholesterol (NRS/CHOL), as established by the Clinical
and Laboratory Standards Institute, with isotope dilution-
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MS used as the reference method, and reference material
taken from the National Institute of Standard and Technol-
ogy. Evidence of equivalence in the analytical performance
of the cholesterol-oxidase assays performed in the UK and
Denmark from a comparison of total cholesterol on forty-
four serum samples which produced a limit of variation of
2% [33].

SNP selection
The APOE gene is located on chromosome 19q13.32. It
comprises four exons, which are transcribed into the
APOE mRNA which is 1180 nucleotides long. The seven
tagSNPs for the APOE gene were chosen based on Inter-
national HapMap Phase II collected from individuals of
Northern and Western European ancestry (CEU) (Hap-
Map Data release 27 Phase 2 + 3, Feb 09, NCBI B36 as-
sembly, dbSNP b126). The Haploview software V3.3
(http://www.broadinstitute.org/haploview/haploview-
downloads) was used to assess the linkage disequilibrium
between SNPs. Tagger software was used to select
tagSNPs with the ‘pairwise tagging only’ option. Two cri-
teria were used to filter the SNPs included in the ana-
lysis, minor allele frequency ≥ 5% and Hardy–Weinberg
equilibrium P-value > 0.01. In total, seven tagSNPs
[rs405509 (G > T), rs1160985 (C > T), rs769450 (G > A),
rs439401 (C > T), rs445925 (G > A), rs405697 (G > A),
and rs1064725 (T > G)] representing the entire common
genetic variations across the APOE gene were selected
for the study. The APOE haplotype/SNPs [6, 11, 37–44]
and LPL [12, 13] SNPs were chosen based on their pre-
vious association with various lipid outcomes.

DNA isolation and genotyping
The genotyping for the selected SNPs using a KASP
assay with a competitive allele-specific PCR assay® was
performed on DNA samples by LGC Genomics (Hod-
desdon, Herts, UK). The eleven SNPs were in Hardy
Weinberg Equilibrium (HWE) (P > 0.05 for all compari-
sons) (Additional file 1: Table S1).

Caerphilly prospective study (CaPS)
Participants and methods
The CaPS was used to replicate the findings from the
PRECISE study. The phase 1 (July 1979 to September
1983) recruitment for the CaPS included 2512 men aged
45–59 years who were living in the town of Caerphilly
and five of its adjacent villages in the UK; these partici-
pants were followed up at regular intervals [45, 46]. The
follow-up data collection included periods from 1984
to1988 (phase 2), from 1989 to 1993 (phase 3), from
1993 to 1997 (phase 4), and from 2002 to 2005 (phase
5). For the current study, the data analysed were taken
from phase 3 (n = 1238), which had the maximum num-
ber of samples and variables appropriate to this analysis

(total cholesterol and dietary information), and from
phase 5 (n = 529) (HDL-C and LDL-C). Ethical approval
was obtained from the South Wales Research Ethics
Committee D, and each subject provided written in-
formed consent.

Dietary information
Participants completed validated semi-quantitative FFQ
in phase 3 [47, 48]. The FFQ included 50 typical food
items in the British diet in order to estimate the mean
daily energy intake and macronutrients and micronutri-
ents consumption.

Anthropometric measurements and biochemical analysis
Height and weight was recorded in order to calculate
the BMI. Height was measured on a stadiometer and
weight was measured on a beam balance. Plasm pre-
pared from blood samples taken after an overnight fast
were transported at 4 °C to the laboratories on the day
of venepuncture. Total cholesterol and HDL-C, LDL-C
concentrations were measured using enzymatic proce-
dures [49]. and the LDL-C levels were calculated using
the Friedewald Formula [50].

DNA isolation and genotyping
DNA was extracted from blood samples collected during
the period 1992–1994. SNP information was obtained
from the Illumina Cardio Metabochip, which includes
data on 200,000 SNPs from regions previously identified
for associations with risk factors for cardiometabolic dis-
ease [51]. Imputation was conducted against the 1000-
genomes reference panel, providing information on ap-
proximately two million typed or imputed SNPs. Dupli-
cate samples were genotyped to compute the error rate.
Quality control on genotyped samples has been previ-
ously reported [52] and the SNPs had a call rate of >
98%. The SNPs were in HWE (P > 0.05) (Additional file
1: Table S1).

Statistical analysis
Statistical analysis was performed using the SPSS soft-
ware package, version 22.0. The data were presented as
mean ± standard deviation (SD) in Tables 1 and 3 and
beta regression coefficients and standard error (SE) were
presented in Tables 2, 4, and 5. Independent t-test was
used to compare means between men and women at
baseline in the PRECISE cohort (Table 1). Univariate lin-
ear regression analysis was applied to test for association
of the SNPs with total cholesterol and HDL-C, control-
ling for age, sex, BMI and country. SNP-diet interactions
on total cholesterol and HDL-C were investigated using
a univariate general linear model. In this model, total
cholesterol and HDL-C were the dependent variables,
SNPs were fixed factors, and dietary factors (fat energy
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%, protein energy %, carbohydrate energy %), sex, age
BMI, and country were covariates. The dominant model
was applied for all SNPs with minor allele frequency ≤ 0.
3 and the additive model applied for SNPs with minor
allele frequency ≥ 0.4. For analytical purposes, the six
APOE genotype groups (E2/E2, E2/E3, E3/E3, E3/E4, E4/
E4, and E2/E4) were classified into three groups. The
E3/E3 genotype was classified as a group as it occurs at
high frequency in the population (wild type). The E2/E2
and E2/E3 genotypes were combined and presented as

E2 carriers. The E3/E4 and E4/E4 genotypes were also
combined, and presented as E4 carriers [29]. Previous
studies have shown that the impact of the E2 allele on
serum lipids is greater than that of the E4 allele [17],
therefore, the E2/E4 genotype was excluded from the
analysis. The Bonferroni correction was applied separ-
ately for association and interaction analyses. For associ-
ation between phenotypic and dietary factors, the
Bonferroni-corrected P value was 0.008 (2 lipid out-
comes* 3 dietary factors) for the PRECISE study and P
value was 0.01 for CaPS (total cholesterol was the only
variable available). For association between SNPs and
lipids (PRECISE study), the Bonferroni corrected P value
was 0.003 (10 SNPs*2 lipid outcomes = 20 tests). For in-
teractions (PRECISE study), the Bonferroni corrected P
value was 0.001 (10 SNPs*2 lipid outcomes*3 dietary fac-
tors = 60 tests). In the replication analysis (CaPS cohort),
the Bonferroni corrected P value for association was 0.
002 (10 SNPs*3 lipid outcomes = 30 tests), while for in-
teractions it was 0.001 (10 SNPs*1 lipid outcome* 3 diet-
ary factors = 30 tests).

Results
Participant characteristics
The general characteristics of the participants by sex are
presented in Table 1. In the PRECISE study, women
were found to have significantly higher total cholesterol
and HDL-C concentrations than men (P = 2.31 × 10− 10

and P = 2.71 × 10− 16, respectively). The consumption of
carbohydrates (P = 1.42 × 10− 9) and protein (energy %)
(P = 5 × 10− 5) were higher in women than in men,
whereas the consumption of fat (energy %) and total
energy intake were lower in women than in men (P = 0.
01). Characteristics of the individuals from CaPS are
given in Table 1. Elevated total cholesterol levels were

Table 2 Association between dietary factors and lipids in
PRECISE and Caerphilly Prospective studies

PRECISE study

Association between dietary factors and total cholesterol

Fat total energy %
intake
Beta (± S.E),
Passociation

Protein total energy %
intake
Beta (± S.E), Passociation

Carbohydrate total energy
% intake
Beta (± S.E), Passociation

0.01 (0.01)
0.47

−0.01 (0.01)
0.13

−0.004 (0.01)
0.40

Association between three dietary factors and HDL-C high density
lipoprotein

Fat total energy %
intake

Protein total energy %
intake

Carbohydrate total energy
% intake

−0.002 (0.002)
0.29

−0.002 (0.004)
0.59

− 0.004 (0.002)
0.02

Caerphilly Prospective study

Association between three dietary factors and total cholesterol

Fat total energy %
intake
Beta (± S.E),
Passociation

Protein total energy %
intake
Beta (± S.E), Passociation

Carbohydrate total energy
% intake
Beta (± S.E), Passociation

0.01 (0.004)
0.06

−0.01 (0.01)
0.26

−0.01 (0.004)
0.17

HDL-C, high density lipoprotein cholesterol
P values were obtained using linear regression adjusted for age, sex, body
mass index and country

Table 1 Baseline characteristics of the PRECISE and Caerphilly Prospective study participants

PRECISE study Caerphilly Prospective study (CaPS)

Characteristics Men
(N = 248 UK, 95 Danish)

Women
(N = 220 UK, 97 Danish)

P value Men
(N = 1238)

Age (years) 67 ± 4 67 ± 4 0.12 62 ± 4

Body mass index (kg/m2) 27.2 ± 4.9 27.3 ± 4.9 0.82 26.8 ± 3.7

Total Cholesterol (mmol/L) 5.6 ± 0.9 6.2 ± 1.1 2.31 × 10−10 6.1 ± 1.1

High density lipoprotein cholesterol (mmol/L)a 1.5 ± 0.3 1.7 ± 0.4 2.71 × 10− 16 1.3 ± 0.3

Protein intake (total energy %) 17.6 ± 3.7 18.8 ± 3.7 5X10− 5 14.9 ± 2.7

Carbohydrate intake (total energy %) 42.8 ± 13.3 48.2 ± 8.7 1.42 × 10− 9 48.4 ± 7.5

Fat intake (total energy %) 35.3 ± 7.1 33.9 ± 6.9 0.01 36.5 ± 6.9

Total energy intake (kcal) 2256 ± 658 1992 ± 613 2.63 × 10−7 1964 ± 625

Total energy intake (MJ) 9.4 ± 2.7 8.3 ± 2.6 2.63 × 10−7 8.2 ± 2.6

Data shown are represented as means ± SD, wherever appropriate. P values are for the differences in the means between men and women. P values were
calculated by using independent t-test
aFor CaPS, HDL-C levels were obtained from phase 5 while all other variables were obtained from phase 3

Shatwan et al. Lipids in Health and Disease  (2018) 17:98 Page 4 of 14

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 



observed among men at phase 3. Dietary-pattern data
showed higher consumption of energy from total fat.

Association between dietary factors and blood lipids
In both the PRECISE and CaPS, there was no association
between the dietary factors and total cholesterol or high-
density lipoprotein after Bonferroni correction and ad-
justment for confounding factors (Table 2).

Genotypes and serum lipid levels in the PRECISE study
As shown in Table 3, of the seven tagSNPs at APOE,
tagSNP rs445925 was significantly associated with total
cholesterol (P = 0.003) after correction for multiple testing.
The ‘A’ allele carriers (5.65 ± 0.98 mmol/L) had 5% lower
levels of total cholesterol than GG homozygotes (5.99 ± 1.
06 mmol/L).
The levels of HDL-C were significantly different

among the LPL SNP genotypes, rs328 (P = 0.04) and
rs320 (P = 0.02), where the carriers of the ‘G’ minor al-
lele of both SNPs had higher levels of HDL-C (1.68 ± 0.
41 mmol/L for rs328 and 1.66 ± 0.40 mmol/L for rs320)
than CC homozygotes (rs328) and TT homozygotes
(rs320) (1.61 ± 0.38 and 1.60 ± 0.39 mmol/L) respectively.
However, these associations were not statistically signifi-
cant after Bonferroni correction.

APOE haplotype and serum lipid levels in the PRECISE
study
The effects of APOE haplotypes (E2, E3, and E4) on
serum lipids are shown in Table 3. These haplotypes (E2,
E3, and E4) were significantly associated with total chol-
esterol (P = 4 × 10− 4) after correction for multiple
testing. The carriers of the E2 allele (5.54 ± 0.97 mmol/
L) had lower total cholesterol concentrations than the
carriers of the E3 (P = 0.001) (5.98 ± 1.05 mmol/L) and
E4 alleles (6.09 ± 1.06 mmol/L) (P = 2 × 10− 4) (Fig. 1).

Interactions between genotypes and dietary factors on
serum lipid in the PRECISE study
None of the dietary factors significantly interacted with
the APOE SNPs, haplotypes and LPL SNPs with plasma
lipids after correction for multiple testing (P > 0.001)
(Table 4).

Replication analysis: Effect of SNPs at APOE and LPL on
serum lipids in the CaPS
The associations of APOE and LPL SNPs with blood
lipids in the CaPS are presented in Table 3. The associ-
ation of APOE haplotype (E2, E3, and E4) and APOE
SNP rs445925 with total cholesterol (P = 2 × 10− 6 and P
= 3 × 10− 4, respectively) was replicated (Fig. 1). The ‘A’
allele carriers of APOE SNP rs445925 had lower total
cholesterol (5.96 ± 1.24 mmol/l) than ‘GG’ genotypes (6.24

± 1.08 mmol/L). In the APOE haplotype analysis, the
carriers of the E2 allele had 5% and 14% lower total
cholesterol than carriers of the E3 (P = 4 × 10− 4) and E4
alleles (P = 3 × 10− 6), respectively. Additionally, significant
association was seen between APOE haplotypes (E2, E3,
and E4) and APOE SNP rs445925and LDL-C (P = 4X10− 4,
0.001, respectively).
There was an interaction between fat (% energy) and

APOE haplotype (E2, E3, and E4) on total cholesterol (P
= 0.038) in CaPS. However, after correction for multiple
testing, all the SNP-diet interactions were consistent
with chance variation (Table 5).

Discussion
Our findings demonstrated significant associations be-
tween the APOE haplotype (E2, E3, and E4) and APOE
SNP rs445925 with total plasma cholesterol and LDL-C
(only CaPS) concentration, which were further replicated
in an independent UK Caucasian cohort. The levels of
total cholesterol were significantly lower in carriers of
the APOE E2 allele and the ‘A’ allele of the SNP
rs445925 than carriers of E3, E4 and ‘GG’ genotype of
the APOE SNP rs445925, respectively. Given that our
findings confirm that genetic polymorphisms of APOE
influence the inter-individual variation in total plasma
cholesterol, a marker of dyslipidemia, changes in dietary
consumption to reduce disease susceptibility could be
implemented for individuals at genetic risk.
The effects of APOE polymorphisms on lipid concen-

trations have previously been investigated in different
ethnic groups [11, 53, 54] and studies have shown that
the APOE gene variants contributed to 7% variability in
total cholesterol [55]. The results of the current study
were in line with previously reported findings that APOE
haplotypes (E2, E3, and E4) are associated with serum
total cholesterol and LDL-C, with E4 carriers associated
with increased concentrations compared with E3/E3
wildtype and particularly E2 carriers [16, 53, 56]. One of
the primary roles of APOE is binding the low density
lipoprotein receptor (LDLR) and the LDLR-related pro-
tein, to facilitate cellular uptake of lipoprotein particles
[57]. The three alleles, E2, E3, and E4, differ in their
amino-acid sequences, resulting in functional differences
in receptors-binding affinity. Amino-acid sequences of
the E2 allele have lower binding affinity than those of
the E3 and E4 alleles, causing decreased hepatic VLDL
and chylomicron remnants clearance, thus reducing the
uptake of postprandial lipoprotein particles [57]. Fur-
thermore, it could be postulated that increase in apoE
TAG-rich lipoproteins in E4 carriers could possibly in-
crease the affinity to bind LDL-receptors resulting in de-
creased uptake of LDL and increased circulating plasma
cholesterol [58]. E2 carriers also have an impaired
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Table 3 Association of APOE and LPL SNPs with HDL-C and total cholesterol levels in the PRECISE and Caerphilly studies

SNP MAF HDL-C (mmol/L) Total Cholesterol (mmol/L) LDL-C a (mmol/L)

PRECISE

LPL

rs320 0.26

TT 1.6 ± 0.3 5.9 ± 1.1

T/G 1.7 ± 0.4 5.8 ± 1.0

P value 0.02 0.19

rs328 0.10

CC 1.6 ± 0.3 5.9 ± 1.1

C/G 1.7 ± 0.4 5.7 ± 0.9

P value 0.04 0.06

APOE

rs405509 0.47

GG 1.7 ± 0.4 5.8 ± 1.1

GT 1.5 ± 0.3 5.8 ± 1.1

TT 1.6 ± 0.3 6.1 ± 1.0

P value 0.07 0.23

rs769450 0.39

GG 1.6 ± 0.3 5.9 ± 1.1

A allele 1.6 ± 0.4 5.9 ± 1.1

P value 0.72 0.97

rs439401 0.33

CC 1.6 ± 0.4 5.9 ± 1.1

T allele 1.6 ± 0.3 5.9 ± 1.1

P value 0.43 0.51

rs445925 0.11

GG 1.6 ± 0.3 5.9 ± 1.1

A allele 1.7 ± 0.4 5.6 ± 0.9

P value 0.25 0.003

rs405697 0.25

GG 1.6 ± 0.4 5.9 ± 1.1

A allele 1.6 ± 0.3 5.9 ± 1.0

P value 0.71 0.96

rs1160985 0.43

CC 1.6 ± 0.3 5.9 ± 1.1

CT 1.6 ± 0.4 5.8 ± 1.0

TT 1.7 ± 0.4 5.9 ± 1.1

P value 0.12 0.44

rs1064725 0.04

TT 1.6 ± 0.4 5.9 ± 1.0

G allele 1.7 ± 0.3 6.1 ± 1.2

P value 0.17 0.38

(rs7412- rs429358) E2, E3, and E4

E3 1.6 ± 0.3 5.9 ± 1.1

E4 1.5 ± 0.3 6.1 ± 1.1
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Table 3 Association of APOE and LPL SNPs with HDL-C and total cholesterol levels in the PRECISE and Caerphilly studies (Continued)

SNP MAF HDL-C (mmol/L) Total Cholesterol (mmol/L) LDL-C a (mmol/L)

E2 1.7 ± 0.4 5.5 ± 0.9

P value 0.09 4X10−4

Caerphilly

LPL

rs320 0.26

TT 1.3 ± 0.3 6.1 ± 1.1 2.7 ± 0.8

T/G 1.4 ± 0.3 6.2 ± 1.2 2.8 ± 0.8

P value 0.05 0.55 0.05

rs328 0.10

CC 1.3 ± 0.3 6.1 ± 1.1 2.7 ± 0.8

C/G 1.3 ± 0.3 6.1 ± 1.1 2.9 ± 0.9

P value 0.63 0.71 0.05

APOE

rs405509 0.46

GG 1.4 ± 0.3 6.0 ± 1.1 2.7 ± 0.9

GT 1.3 ± 0.3 6.2 ± 1.1 2.8 ± 0.8

TT 1.3 ± 0.3 6.3 ± 1.1 2.9 ± 0.9

P value 0.16 0.02 0.29

rs769450 0.41

GG 1.3 ± 0.2 6.1 ± 1.2 2.8 ± 0.9

A allele 1.4 ± 0.3 6.2 ± 1.1 2.8 ± 0.8

P value 0.10 0.41 0.82

rs439401 0.35

CC 1.4 ± 0.3 6.2 ± 1.1 2.8 ± 0.9

T allele 1.3 ± 0.3 6.1 ± 1.1 2.7 ± 0.8

P value 0.72 0.42 0.32

rs445925 0.11

GG 1.3 ± 0.3 6.2 ± 1.1 2.8 ± 0.8

A allele 1.3 ± 0.3 5.9 ± 1.2 2.5 ± 0.9

P value 0.99 3X10−4 0.001

rs405697 0.26

GG 1.4 ± 0.4 6.1 ± 1.1 2.8 ± 0.9

A allele 1.3 ± 0.3 6.1 ± 1.1 2.8 ± 0.8

P value 0.30 0.88 0.9

rs1160985 0.45

CC 1.34 ± 0.29 6.2 ± 1.1 2.8 ± 0.9

CT 1.35 ± 0.35 6.2 ± 1.2 2.7 ± 0.8

TT 1.37 ± 0.40 6.1 ± 1.0 2.8 ± 0.8

P value 0.61 0.30 0.73

rs1064725 0.01

TT 1.3 ± 0.3 6.2 ± 1.1 2.8 ± 0.8

G allele 1.4 ± 0.3 6.1 ± 1.1 2.8 ± 0.7

P value 0.18 0.60 0.68

(rs7412- rs429358) E2, E3, and E4
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conversion of the VLDL particles to LDL-C compared to
E4 carriers [59], who have a higher rate of VLDL catab-
olism [60], which explains in part the lower total choles-
terol and LDL-C in E2 allele carriers.
Furthermore, our study highlights an association be-

tween APOE SNP rs445925, which is one of the selected
tagSNPs within the APOE gene, and total cholesterol.
The SNP rs445925 has not been extensively studied,
however, a genome-wide association study showed a sig-
nificant association between SNP rs445925 and LDL-C
levels in 3644 black and white individuals from the US
and Europe [61]. In addition, previous genome-wide
linkage and association studies have shown linkage dis-
equilibrium (LD) between APOE SNPs rs7412 and
rs445925 [62] and between ‘A’ allele carriers at SNP
rs445925 and E2 haplotype [63], respectively, which
could explain in part a similar function in cholesterol
synthesis. It is also possible that A’ allele carriers of the
SNP rs445925 might exhibit lower conversion of the
VLDL particles to LDL-C which could have resulted in
the decreased rate of LDL formation and hence lowered
the total cholesterol concentrations [63].

Besides genetic associations, our study also identified
an interaction of APOE haplotypes (E2, E3, and E4) with
intake from fat (%) on total cholesterol in the CaPS,
where, among those who consumed a low-fat diet (%),
individuals carrying the E2 allele had significantly lower
total cholesterol concentrations than to E4 allele car-
riers. However, this interaction was not statistically sig-
nificant after correction for multiple testing. A previous
study has examined the response of APOE genotype to
fat intake in 45 individuals using a prospective design,
where after consumption of a lower-fat-cholesterol diet
(34% fat, 265 mg/day) according to modified National
Cholesterol Education program there was a significant
reduction in total cholesterol by 14%, 9%, and 4% in E4/
E4, E3/E4, and E3/E3 genotypes, respectively [64]. An-
other study showed that the response to a diet high in
cholesterol increases total cholesterol in E3 and E4 com-
pared to E2 allele carries in a study comprising 29
healthy men [65]. By contrast, a cross sectional study in
European Caucasians (n = 996) reported that E2 allele
carriers had lower total cholesterol levels, but there were
no reported between interactions between saturated fatty

Table 3 Association of APOE and LPL SNPs with HDL-C and total cholesterol levels in the PRECISE and Caerphilly studies (Continued)

SNP MAF HDL-C (mmol/L) Total Cholesterol (mmol/L) LDL-C a (mmol/L)

E3 1.4 ± 0.4 6.2 ± 1.1 2.8 ± 0.8

E4 1.4 ± 0.3 6.4 ± 1.1 3.0 ± 0.9

E2 1.3 ± 0.3 5.8 ± 1.3 2.4 ± 0.8

P value 0.95 2X10−6 4X10−4

Values are given as mean ± SD. P values for differences between genotypes were obtained using linear regression model adjusted for age, sex, body mass index,
and country
Bonferroni corrected P value < 0.003 was considered statistically significant
MAF minor allele frequency, HDL-C high density lipoprotein cholesterol, LDL-C low density lipoprotein cholesterol
a LDL-C values available only in Caerphilly prospective study

Fig. 1 Association of APOE haplotypes (E2, E3, and E4) with total cholesterol concentrations in the Prevention of Cancer by Intervention
with Selenium (PRECISE) study and Caerphilly Prospective study (CaPS). E2 allele carriers have significantly lower levels of total cholesterol
than E3 (P = 0.001 and P = 4 × 10− 4 in the PRECISE and CaPS, respectively) and E4 (P = 2 × 10− 4 and P = 3 × 10− 6 in the PRECISE and CaPS,
respectively) allele carriers
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Table 4 Interaction between APOE and LPL SNPs and dietary factors on HDL-C and total cholesterol in the PRECISE study

Interaction between rs320 at LPL*dietary factors on HDL-C

Interaction between SNP rs320* fat energy %
intake

Interaction between SNP rs320* protein energy
% intake

Interaction between SNP rs320* carbohydrate
energy % intake

0.003 (0.004)
0.46

0.002 (0.01)
0.76

−0.0004 (0.002)
0.87

Interaction between rs320 at LPL *dietary factors on Total Cholesterol

Interaction between SNP rs320* fat energy %
intake

Interaction between SNP rs320* protein energy
% intake

Interaction between SNP rs320* carbohydrate
energy % intake

0.01(0.01)
0.27

−0.03 (0.02)
0.13

−0.01 (0.01)
0.06

Interaction between rs328 at LPL *dietary factors on HDL-C

Interaction between SNP rs328* fat energy %
intake

Interaction between SNP rs328* protein energy
% intake

Interaction between SNP rs328* carbohydrate
energy % intake

0.01 (0.01)
0.09

−0.001 (0.01)
0.89

0.001 (0.003)
0.63

Interaction between rs328 at LPL *dietary factors on Total Cholesterol

Interaction between SNP rs328* fat energy %
intake

Interaction between SNP rs328* protein energy
% intake

Interaction between SNP rs328* carbohydrate
energy % intake

−0.002 (0.02)
0.88

0.003 (0.03)
0.90

−0.01 (0.01)
0.55

Interaction between rs405509 at APOE*dietary factors on HDL-C

Interaction between SNP rs405509* fat
energy % intake

Interaction between SNP rs405509* protein
energy % intake

Interaction between SNP rs405509* carbohydrate
energy % intake

0.01 (0.01)
0.11

−0.001 (0.01)
0.75

−0.01 (0.003)
0.09

Interaction between rs405509 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs405509* fat
energy % intake

Interaction between SNP rs405509* protein
energy % intake

Interaction between SNP rs405509* carbohydrate
energy % intake

0.02 (0.02)
0.39

−0.04 (0.03)
0.26

−0.01 (0.01)
0.59

Interaction between rs769450 at APOE *dietary factors on HDL-C

Interaction between SNP rs769450* fat
energy % intake

Interaction between SNP rs769450* protein
energy % intake

Interaction between SNP rs769450* carbohydrate
energy % intake

−0.001 (0.004)
0.88

0.001 (0.01)
0.88

0.003 (0.003)
0.19

Interaction between rs769450 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs769450* fat
energy % intake

Interaction between SNP rs769450* protein
energy % intake

Interaction between SNP rs769450* carbohydrate
energy % intake

−0.001 (0.01)
0.94

0.01 (0.02)
0.63

0.01 (0.01)
0.51

Interaction between rs439401 at APOE *dietary factors on HDL-C

Interaction between SNP rs439401* fat
energy % intake

Interaction between SNP rs439401* protein
energy % intake

Interaction between SNP rs439401* carbohydrate
energy % intake

0.01 (0.004)
0.11

0.01 (0.01)
0.39

−0.001 (0.003)
0.64

Interaction between rs439401 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs439401* fat
energy % intake

Interaction between SNP rs439401* protein
energy % intake

Interaction between SNP rs439401* carbohydrate
energy % intake

0.003 (0.01)
0.79

−0.02 (0.02)
0.37

− 0.001 (0.01)
0.89

Interaction between rs445925 at APOE *dietary factors on HDL-C

Interaction between SNP rs445925* fat
energy % intake

Interaction between SNP rs445925* protein
energy % intake

Interaction between SNP rs445925* carbohydrate
energy % intake
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Table 4 Interaction between APOE and LPL SNPs and dietary factors on HDL-C and total cholesterol in the PRECISE study
(Continued)

Interaction between rs320 at LPL*dietary factors on HDL-C

−0.003 (0.01)
0.53

0.01 (0.01)
0.52

0.0003 (0.003)
0.93

Interaction between rs445925 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs445925* fat
energy % intake

Interaction between SNP rs445925* protein
energy % intake

Interaction between SNP rs445925* carbohydrate
energy % intake

−0.03 (0.01)
0.05

0.01 (0.03)
0.66

0.01 (0.01)
0.36

Interaction between rs405697 at APOE *dietary factors on HDL-C

Interaction between SNP rs405697* fat
energy % intake

Interaction between SNP rs405697* protein
energy % intake

Interaction between SNP rs405697* carbohydrate
energy % intake

0.01(0.004)
0.06

−0.002 (0.01)
0.80

−0.004 (0.002)
0.16

Interaction between rs405697 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs405697* fat
energy % intake

Interaction between SNP rs405697* protein
energy % intake

Interaction between SNP rs405697* carbohydrate
energy % intake

0.01 (0.01)
0.22

−0.03 (0.02)
0.19

−0.003 (0.01)
0.72

Interaction between rs1160985 at APOE *dietary factors on HDL-C

Interaction between SNP rs1160985* fat
energy % intake

Interaction between SNP rs1160985* protein
energy % intake

Interaction between SNP rs1160985* carbohydrate
energy % intake

−0.01 (0.01)
0.08

−0.002 (0.01)
0.97

0.01 (0.004)
0.03

Interaction between rs1160985 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs1160985* fat
energy % intake

Interaction between SNP rs1160985* protein
energy % intake

Interaction between SNP rs1160985* carbohydrate
energy % intake

−0.01 (0.01)
0.58

0.05 (0.03)
0.28

−0.001 (0.01)
0.19

Interaction between rs1064725 at APOE *dietary factors on HDL-C

Interaction between SNP rs1064725* fat
energy % intake

Interaction between SNP rs1064725* protein
energy % intake

Interaction between SNP rs1064725* carbohydrate
energy % intake

−0.001 (0.01)
0.90

0.004 (0.02)
0.77

−0.002 (0.004)
0.73

Interaction between rs1064725 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs1064725* fat
energy % intake

Interaction between SNP rs1064725* protein
energy % intake

Interaction between SNP rs1064725* carbohydrate
energy % intake

0.03 (0.03)
0.28

0.02 (0.04)
0.62

−0.01 (0.01)
0.48

Interaction between APOE (E2, E3, and E4)*dietary factors on HDL-C

Interaction between SNP APOE (E2, E3, and
E4)* fat energy % intake

Interaction between SNP APOE (E2, E3, and E4)*
protein energy % intake

Interaction between SNP APOE (E2, E3, and E4)*
carbohydrate energy % intake

−0.01 (0.01)
0.39

0.001 (0.01)
0.99

0.002 (0.003)
0.17

Interaction between APOE (E2, E3, and E4)*dietary factors on Total Cholesterol

Interaction between SNP APOE (E2, E3, and
E4)* fat energy % intake

Interaction between SNP APOE (E2, E3, and E4)*
protein energy % intake

Interaction between SNP APOE (E2, E3, and E4)*
carbohydrate energy % intake

−0.03 (0.02)
0.18

−0.02 (0.04)
0.32

0.01 (0.01)
0.51

Values represented β regression coefficients (± S.E), and Pinteraction. P values were obtained by using a general linear model adjusted for age, sex, body mass index,
country and total energy intake, wherever appropriate
Bonferroni corrected P value < 0.001 was considered statistically significant
HDL-C High density lipoprotein cholesterol
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Table 5 Interaction between APOE and LPL SNPs and dietary factors on total cholesterol in the CaPS

Interaction between rs320 at LPL *dietary factors on Total Cholesterol

Interaction between SNP rs320* fat energy %
intake

Interaction between SNP rs320* protein energy
% intake

Interaction between SNP rs320* carbohydrate
energy % intake

0.01 (0.01)
0.48

− 0.01 (0.03)
0.57

− 0.004 (0.01)
0.64

Interaction between rs328 at LPL *dietary factors on Total Cholesterol

Interaction between SNP rs328* fat energy %
intake

Interaction between SNP rs328* protein energy
% intake

Interaction between SNP rs328* carbohydrate
energy % intake

− 0.01 (0.01)
0.58

−0.04 (0.03)
0.17

0.01 (0.01)
0.29

Interaction between rs405509 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs405509* fat
energy % intake

Interaction between SNP rs405509* protein
energy % intake

Interaction between SNP rs405509* carbohydrate
energy % intake

0.03 (0.01)
0.11

−0.04 (0.04)
0.52

−0.02 (0.01)
0.31

Interaction between rs769450 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs769450* fat
energy % intake

Interaction between SNP rs769450* protein
energy % intake

Interaction between SNP rs769450* carbohydrate
energy % intake

−0.01 (0.01)
0.10

0.05 (0.02)
0.04

0.01 (0.01)
0.42

Interaction between rs439401 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs439401* fat
energy % intake

Interaction between SNP rs439401* protein
energy % intake

Interaction between SNP rs439401* carbohydrate
energy % intake

−0.003 (0.01)
0.77

−0.01 (0.03)
0.68

0.004 (0.01)
0.65

Interaction between rs445925 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs445925* fat
energy % intake

Interaction between SNP rs445925* protein
energy % intake

Interaction between SNP rs445925* carbohydrate
energy % intake

−0.0003 (0.01)
0.97

−0.02 (0.03)
0.55

0.002 (0.01)
0.87

Interaction between rs405697 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs405697* fat
energy % intake

Interaction between SNP rs405697* protein
energy % intake

Interaction between SNP rs405697* carbohydrate
energy % intake

0.01 (0.01)
0.51

−0.03 (0.03)
0.24

−0.002 (0.01)
0.84

Interaction between rs1160985 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs1160985* fat
energy % intake

Interaction between SNP rs1160985* protein
energy % intake

Interaction between SNP rs1160985* carbohydrate
energy % intake

−0.01 (0.01)
0.13

−0.004 (0.03)
0.19

0.01 (0.01)
0.43

Interaction between rs1064725 at APOE *dietary factors on Total Cholesterol

Interaction between SNP rs1064725* fat
energy % intake

Interaction between SNP rs1064725* protein
energy % intake

Interaction between SNP rs1064725* carbohydrate
energy % intake

−0.01 (0.03)
0.66

0.05 (0.11)
0.62

0.01 (0.03)
0.74

Interaction between APOE (E2,E3, and E4)*dietary factors on Total Cholesterol

Interaction between SNP APOE (E2, E3, and
E4)* fat energy % intake

Interaction between SNP APOE (E2, E3, and E4)*
protein energy % intake

Interaction between SNP APOE (E2, E3, and E4)*
carbohydrate energy % intake

−0.02 (0.02)
0.038

0.02 (0.04)
0.83

0.01 (0.01)
0.08

Values represented β regression coefficients (± S.E), and Pinteraction
P values were obtained by using a general linear model adjusted for age, sex, body mass index, country and total energy intake, wherever appropriate
Bonferroni corrected P value < 0.001 was considered statistically significant
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acids and total cholesterol [66]. Given that the previous
studies have given inconsistent results and have used
various types of fatty acids, replication of our gene-diet
interaction finding in a large well-designed randomized
controlled trial is highly warranted.
Previous studies have shown that the minor allele of

LPL SNP rs328 enhance lipolytic activity [12]. Increased
activity of LPL results in enhance clearance of TAG
from the circulation, and associated with higher HDL-C
concentrations [67]. The LPL SNP rs320 (HindIII) is in
LD with rs328 (S447X) and they have been shown to
have similar effects on HDL-C, where minor allele was
reported to increase HDL-C [24, 68]. In our study, in ac-
cordance with findings from other studies, there were
associations between LPL SNPs, rs320 and rs328, and
HDL-C concentrations, where common homozygotes of
both SNPs had lower HDL-C [22–24, 26]. However, in
our study, these associations were no longer statistically
significant after Bonferroni correction. Furthermore,
there were no significant LPL SNP-diet interactions with
HDL-C or total cholesterol concentrations in either co-
hort. To date, there has only been one study that has
shown an interaction between LPL rs328 and total fat in-
take on HDL-C in 8764 individuals from the US popula-
tion, where high fat intake associated with increase
HDL-C in CC homozygotes and CG heterozygotes car-
riers [28]. One of the main reasons we did not identify a
significant interaction may be our small sample size;
however, we cannot rule out an effect of differences in
dietary fat sources between European and the US
population.
The present study has some limitations. Importantly,

some lipid-related outcomes, such as LDL-C and TAG
concentrations, were not measured in the PRECISE study.
The PRECISE study was also conducted in two popula-
tions, a UK cohort and a Danish cohort, which used differ-
ent food frequency questionnaires and this might have
introduced measurement bias, even though the current
results were adjusted for country in the regression analysis
to avoid confounding. Another possible limitation is the
use of a cross-sectional design (in both studies) to investi-
gate genetic effects at a single point in time, whereas a
longitudinal analysis design would have captured the gen-
etic effects on lipid outcomes over a specific time period.
The effect-size of the minor allele of some of the studied
SNPs was relatively small, and hence a large sample size is
required to detect reliably detect any interaction between
SNPs and dietary factors. Despite the fact that this study
was not adequately powered to detect such an interaction,
it was sufficiently powered to detect the main effects (i.e.,
associations). Significant gene-diet interactions were iden-
tified, however these did not reach the Bonferroni-
corrected P value (P = 0.001) and hence need to be con-
firmed in larger cohorts. This study is strengthened by the

fact that it is the first study to investigate the role of
tagSNPs at the APOE gene in relation to dietary factors
and lipid outcomes. The fact that genetic associations
from the PRECISE study were replicated in another Cau-
casian cohort (CaPS) confirms the validity of our findings.
Additionally, CaPS was based on a cohort with a very high
response rate, and is therefore closely representative of the
general population.

Conclusion
Our study, carried out in two Caucasian populations,
confirmed that genetic variations at the APOE gene
locus influence plasma lipid concentrations. Thus, our
results suggest that APOE gene variants affect risk of
dyslipidemia in individuals who carry the E4 risk allele
and GG genotype at SNP rs445925. Future studies with
a larger sample size examining tagSNPs at APOE, par-
ticularly prospectively genotyped dietary intervention
studies are required to confirm the gene-diet interac-
tions identified in our study.
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