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Abstract

Population-attributable risk models estimate that up to one-third of Alzheimer’s disease (AD) 

cases may be preventable through risk factor modification. The field of AD prevention has largely 

focused on addressing these factors through universal risk reduction strategies for the general 

population. However, targeting these strategies in a clinical precision medicine fashion, including 

the use of genetic risk factors, allows for potentially greater impact on AD risk reduction. 

Apolipoprotein E (APOE), and specifically the APOE ε4 variant, is one of the most well-

established genetic influencers on late-onset AD risk. In this review, we evaluate the impact of 

APOE ε4 carrier status on AD prevention interventions, including lifestyle, nutrigenomic, 

pharmacogenomic, AD comorbidities, and other biological and behavioral considerations. Using a 

clinical precision medicine strategy that incorporates APOE ε4 carrier status may provide a highly 

targeted and distinct approach to AD prevention with greater potential for success.
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Introduction

Alzheimer’s disease (AD) affects more than 5.5 million people in the United States, and is 

estimated to affect as many as 24 million people worldwide (1). While the prevalence of AD 

increases 15-fold between the ages of 65 to 85, research has shown that the disease starts to 

develop in the brain decades before clinical symptoms become apparent (2). Recent 

epidemiological studies have shown that up to one-third of dementia cases may be 

preventable through risk factor modification, including changes in diet, activity level, and 
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management of comorbidities such as diabetes, hypertension, and hyperlipidemia (3). These 

patient-specific lifestyle, behavioral, and treatment modifications, in addition to family 

history and genetic risk factor assessment, can be used to provide a highly targeted and 

distinct approach to AD prevention.

While the field of AD prevention continues to evolve, many interventions are based on 

universal risk-reduction strategies for the general population rather than a clinical precision 

medicine approach that incorporates individualized risk factors such as genetics. Targeting 

AD prevention strategies in such a way is important because it allows for optimal risk 

reduction by addressing risk factors for a particular individual. In the following discussion, 

we review examples of a clinical precision medicine AD prevention strategy, that factors in 

the most well-established genetic influencer on late-onset AD risk, apolipoprotein E (APOE) 

(4), and which may impact the effectiveness of various AD prevention interventions. We 

begin with an introduction to the APOE gene, followed by a discussion of the literature 

linking the specific APOE ε4 polymorphism to increased risk of AD. We then review the 

literature investigating whether APOE ε4 has been shown to modify the effectiveness of 

various prevention interventions for AD. From a practical clinical perspective, considering 

that APOE is available via direct-to-consumer testing, and also readily available to order by 

clinicians, its application in routine clinical care should be further explored as its use may 

lead to more specialized and effective prevention strategies to come.

APOE and AD Risk

APOE is a gene that codes for the apolipoprotein E protein, which is important in the 

transport and metabolism of lipids (5). The three major alleles of the APOE gene are ε2, ε3, 

and ε4. APOE ε4 carriers are at increased risk for developing AD and increased risk for 

developing the disease at an earlier age (6), while APOE ε2 carriers are at decreased risk for 

developing the disease (7). Furthermore, studies have shown that individuals with two copies 

of the ε4 allele are at even greater risk, and the odds ratios for developing AD based on 

APOE is 5 times greater in APOE ε4 homozygotes compared to heterozygotes (8). Imaging 

studies have further supported these findings by demonstrating that APOE ε4 carriers have 

higher levels of brain amyloid-β (Aβ) and lower levels of CSF Aβ42 compared to non-

carriers, findings that are associated with AD pathology (9–12).

With such a strong potential for the APOE ε4 variant to affect the development of AD, and 

given that its frequency in the general population is estimated to range from 0.09 to 0.30 (8, 

13), it is important to consider AD prevention strategies in relation to ε4 carrier status. 

Tailoring AD prevention strategies to ε4 carrier status in such a way is one example of how 

the field of AD prevention can take further steps towards more precision-based care for its 

patients.

Utility of APOE in the Clinical Practice of AD Prevention: Lifestyle, 

Nutrigenomic, Pharmacogenomic, and AD Comorbidity Considerations

In this section, we discuss research incorporating APOE ε4 carrier status into strategies for 

AD prevention, including considerations related to lifestyle, nutrigenomics, 
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pharmacogenomics, AD comorbidities, and other biological and behavioral factors that may 

be impacted by ε4 carrier status.

Multi-Modal Lifestyle Considerations

Some clinical trials have demonstrated that multimodal interventions aimed at reducing AD 

risk, including nutrition, physical activity, cognitive engagement, and management of 

comorbidities improved cognitive functioning in non-impaired individuals at risk for AD 

(14, 15). A subgroup analysis of the Finnish Geriatric Intervention Study to Prevent 

Cognitive Impairment and Disability (FINGER) trial showed that there was no significant 

difference between the effects of lifestyle modifications on cognitive function in APOE ε4 

carriers versus non-carriers (16). However, within-group analysis by ε4 carrier status 

demonstrated that there was greater improvement in certain measures of cognitive function 

in treatment versus control groups for ε4 carriers compared to non-carriers. These findings 

suggest that ε4 carriers may respond differently than non-carriers to certain interventions, 

and examination of more specialized prevention strategies based on ε4 carrier status is 

warranted.

Physical Activity

Physical activity is a critical aspect of AD prevention (12, 17–19). A systematic review of 16 

prospective studies concluded that physical activity decreased the risk of developing AD by 

45% (19). Several studies have further demonstrated a difference in response to physical 

activity in APOE ε4 carriers versus non-carriers (20, 21). For example, sedentary ε4 non-

carriers had an odds ratio (OR) for AD of 1.77 compared to physically active non-carriers, 

whereas physically active ε4 carriers had an OR of 2.30 and sedentary ε4 carriers had an OR 

of 5.53 (20). Another study demonstrated that aerobic activity was associated with greater 

cognitive performance for ε4 carriers compared to non-carriers (21). Neuroimaging studies 

have further demonstrated that ε4 carrier status exacerbates the effect of a sedentary lifestyle 

on AD pathology in cognively healthy individuals (12, 22). One study demonstrated that 

sedentary individuals who were ε4 carriers had significantly higher levels of brain Aβ and 

lower levels of CSF Aβ42 compared to sedentary non-carriers, findings associated with AD 

pathology (12). Another study showed that the least physically active ε4 carriers had 

significantly higher levels of brain Aβ than the least physically active non-carriers, whereas 

the most physically active individuals had similar levels of brain Aβ regardless of ε4 carrier 

status (22). These findings have important implications for physical activity 

recommendations and suggest that increasing physical activity, while important for all AD 

prevention patients, may have more pronounced effects in ε4 carriers compared to non-

carriers. The findings also suggest that physical activity may prevent Aβ accumulation that 

occurs in the brains of ε4 carriers before clinical symptoms of AD even become apparent.

Physical activity may not only prevent cognitive decline, but may also improve cognitive 

function. For example, one neuroimaging study showed that physical activity improved 

semantic memory processing for ε4 carriers as measured by fMRI brain imaging (23). While 

another RCT found that non-carriers had greater improvement in cognitive function in 

response to physical activity, this study was performed in patients already experiencing 
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subjective cognitive complaints at baseline (24). This further suggests that physical activity 

may be most effective for ε4 carriers during a critical window of AD prevention before 

clinical symptoms begin to develop. Overall, the current evidence demonstrates that exercise 

is a critical intervention, especially for non-impaired ε4 carriers. Specialized, more effective 

prevention strategies for ε4 carriers may be possible in the future but will require additional 

investigation into the type and intensity of physical activity necessary to optimize AD risk 

reduction for this population.

Tobacco Use

A meta-analysis indicated that there was conflicting evidence about the association between 

tobacco use and risk of AD (25). When accounting for APOE ε4 carrier status several 

studies have found that ε4 carriers have a greater risk of AD associated with tobacco use 

than non-carriers (20, 26), although some have found no association (27). In one study, 

smokers who were ε4 carriers had lower auditory-verbal learning and memory scores 

compared to smokers who were non-carriers and compared to non-smokers regardless of ε4 

carrier status (26). The study further showed that ε4 carriers who were smokers had more 

brain Aβ deposition compared to carriers who were non-smokers as well as non-carriers 

regardless of smoking history. Overall, these findings demonstrate that ε4 carrier status may 

exacerbate the effects of smoking on the development of AD pathology and cognitive 

impairment. While smoking cessation is an important preventative health strategy for 

numerous health reasons, it may be especially important for ε4 carriers for AD prevention as 

well.

Alcohol Use

Light-to-moderate alcohol consumption has been associated with a decreased risk of AD 

(28), whereas heavy alcohol consumption has been associated with an increased risk (29). 

However, this relationship may not apply to ε4 carriers. Up to three servings of wine per day 

has been associated with a lower risk of AD for ε4 non-carriers (30), while consumption of 

any amount of alcohol may increase the risk of AD for ε4 carriers (20, 31, 32). In one study, 

both light (1-6 drinks per week) and moderate (7-14 drinks per week) alcohol consumption 

was associated with improvement in learning and memory for ε4 non-carriers, but with a 

decline in learning and memory for ε4 carriers (31). Similarly, in other studies ε4 carriers 

who consumed alcohol one or more times per month had a higher risk of AD than those who 

never consumed alcohol (20) and the risk of AD for ε4 carriers increased with increasing 

amounts of alcohol consumption (32). While another study showed that alcohol 

consumption was associated with a decreased risk of AD for ε4 carrier women, this study 

was conducted retrospectively through interviews with relatives and only had ε4 carrier 

status for 64% of cases and for none of the controls (27). Overall, the majority of evidence 

suggests that alcohol consumption for AD prevention may need to be tailored to ε4 carrier 

status. Whereas light-to-moderate alcohol consumption may be beneficial for non-carriers 

for AD prevention, decreasing alcohol intake or abstaining from alcohol may be beneficial 

for carriers.
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Cognitive Engagement

Participating in cognitively engaging activities such as games, crafts, music, computer 

usage, and social activities has been associated with a decreased risk of incident Mild 

Cognitive Impairment (MCI) (33) and AD (34, 35). Some studies suggest that this protective 

effect may be particularly significant for ε4 carriers (36, 37). Among others, one study 

showed that engaging in recreational activities or hobbies was associated with a significantly 

reduced risk of cognitive decline, and this effect was more pronounced for ε4 carriers (36). 

Consistent with these findings, a neuroimaging study showed Aβ deposition was decreased 

in ε4 carriers who had greater lifetime cognitive activity (38). However, other studies 

suggest that non-carriers benefit more from cognitive engagement (33, 39). For example, in 

one study ε4 non-carriers who engaged in cognitively stimulating activities had the lowest 

risk of MCI (hazard ratio [HR] of 0.73), while ε4 carriers who did not engage in these 

activities had the highest risk (HR of 1.74) (33). Another study showed that engaging in 

cognitively stimulating activities was not associated with a reduced risk of cognitive decline 

in ε4 carriers, although this study had a smaller sample size and follow-up was only up to 18 

months (39). Overall, the evidence suggests that increasing amounts of cognitive 

engagement may decrease the risk of AD, although it is unclear whether these activities have 

greater benefits for ε4 carriers or non-carriers. It is possible that carriers and non-carriers 

may respond differently to specific types of cognitive engagement. It is also possible that 

individuals with greater cognitive reserve elect to participate in more cognitively stimulating 

activities. Therefore, further research is required to explore the impact of cognitive 

engagement on AD risk in both carriers and non-carriers, as well as to explore the specific 

types of cognitive activities that may offer the greatest impact based on carrier status.

Nutrigenomic Considerations

Diet

The Mediterranean diet (MeDi), which generally emphasizes vegetables, legumes, 

monounsaturated and polyunsaturated fats, moderate amounts of fish, poultry and alcohol 

and limited amounts of dairy and red meat (40), has been associated with a decreased risk of 

AD (40, 41). For example, one study showed that MeDi adherence reduced the risk of 

cognitive impairment by 33% (41). Neuroimaging findings have also supported the benefits 

of MeDi adherence for AD prevention. One study demonstrated that non-impaired subjects 

with higher MeDi adherence exhibited greater cortical thickness in AD-affected brain 

regions compared to those with lower adherence (40). Studies also suggest that MeDi 

adherence has more importance for ε4 non-carriers compared to carriers for the purposes of 

AD prevention (40, 42). Among those with high MeDi adherence, ε4 non-carriers had 

greater cortical thickness in AD-affected brain regions than carriers, whereas there was no 

difference between carriers and non-carriers among those with low MeDi adherence (40). 

Another study demonstrated that MeDi adherence was associated with better performance 

on the clock drawing test, a measure of executive functioning and spatial reasoning, for ε4 

non-carriers but not for ε4 carriers (42). These findings present both anatomical and clinical 

evidence that MeDi adherence may have greater AD preventative effects for ε4 non-carriers. 

However, a recent study demonstrated that there was no association between MeDi 

adherence and Aβ deposition in healthy individuals regardless of ε4 carrier status (43). This 
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raises the question of whether the association between MeDi adherence and cognitive 

function and cortical thickness seen in prior studies is due to another mechanism unrelated 

to decreasing Aβ deposition. Therefore, additional research is warranted to confirm this 

finding and further explore the benefits of MeDi adherence for ε4 non-carriers.

In addition to MeDi adherence, dietary saturated fatty acid (SFA) content has also been 

examined for AD risk and prevention. Diets high in SFAs have been associated with lower 

cognitive function and increased risk of incident MCI (44). Some studies also suggest that 

high SFA diets are associated with a greater risk of AD for ε4 carriers compared to non-

carriers (20, 45). For example, one study showed that ε4 carriers who consumed a diet high 

in SFAs had a 7-fold increased risk for AD compared to non-carriers (20). However, another 

recent study demonstrated conflicting results regarding the effect of a low SFA diet for ε4 

carriers. In this study, non-impaired ε4 carriers who consumed a diet high in SFAs (50% 

total fat, 25% SFA) with a high glycemic index (GI > 70) as opposed to a diet low in SFA 

(25% total fat, 7% SFA) with a low glycemic index (GI < 70) exhibited greater improvement 

in cognitive function, whereas non-carriers exhibited decreased cognitive function on the 

high SFA and high GI diet (46). A RCT is underway that aims to further explore the impact 

of a high SFA and high GI diet on cognitive function for ε4 carriers and non-carriers (47). 

The results of this trial, which is scheduled to be completed in 2020, will potentially offer 

more clarity on whether a high or low SFA diet may offer the most benefit for AD 

prevention. It should be noted, however, that this study investigates the impact of both high 

SFA and high GI together so it may not be possible to discern the impact of either dietary 

intervention alone on cognitive function. Future studies should assess the impact of high 

SFA and high GI diets separately to explore their individual impacts on cognitive function 

and AD risk reduction.

n-3 Polyunsaturated Fatty Acids

Optimizing levels of the n-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid 

(DHA) and eicosapentaenoic acid (EPA) is another important consideration for AD 

prevention (48, 49). Three recent RCTs support the use of high-dose DHA supplementation 

in non-impaired ε4 carriers for AD prevention (49). One RCT showed that male ε4 carriers 

who received 1.16g/day of DHA exhibited greater improvement in memory reaction time 

compared to non-carriers (50). Another RCT showed that ε4 carriers who received 800 mg 

of DHA for 3 years exhibited improvement in composite scores (49, 51). A third RCT 

showed that ε4 carriers receiving either low-dose (0.4g/day) or high dose (1.8g/day) EPA 

and DHA supplementation for 26 weeks improved in attentional measures of cognition (52). 

While other studies have found that non-carriers have greater improvement in response to 

fish consumption or DHA supplementation, these subjects already had mild to moderate AD 

or subjective memory complaints and therefore these ε4 carriers may already be outside a 

possible critical window for prevention (53–55).

Overall, these results suggest that n-3 PUFAs may have the greatest AD preventive effect for 

non-impaired ε4 carriers and may have less of a therapeutic effect after clinical symptoms of 

AD begin to appear. However, another important consideration is the impact of n-3 PUFA 

supplementation on serum LDL cholesterol. One review showed that n-3 PUFA 
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supplementation resulted in higher serum LDL and the effects were greater in ε4 carriers 

compared to non-carriers (56). Another RCT showed that DHA supplementation (3.7g/day) 

resulted in a non-significant 10% increase in LDL for ε4 carriers compared to a non-

significant 4% reduction in LDL for non-carriers (57). While not statistically significant, this 

trend towards elevated LDL in ε4 carriers following DHA supplementation requires more 

investigation as elevated LDL is another risk factor for AD. Therefore, further research is 

necessary to define the precise relationship between APOE ε4 and n-3 PUFA 

supplementation, as well as to determine the most effective dose or formulation to maximize 

AD risk reduction.

Vitamin D

A recent systematic review and meta-analysis showed that the risk of cognitive impairment 

was more than doubled in those with low vitamin D levels, ranging from less than 25-50 

nmol/1 depending on the study (58). However, analysis of the 1958 British birth cohort of 

over 18,000 individuals demonstrated that both low (<25 nmol/1) and high (≥ 75 nmol/1) 

vitamin D levels were associated with lower cognitive functioning (59). This non-linear 

association was further described in a recent study investigating the impact of vitamin D 

concentrations and APOE ε4 carrier status on cognitive function. In this study, researchers 

demonstrated that ε4 homozygotes with high vitamin D concentrations had higher cognitive 

functioning and those with low vitamin D concentrations had lower cognitive functioning 

(60). However, ε4 heterozygotes and non-carriers with high vitamin D concentrations had 

lower cognitive functioning. Along with the previous study, these findings suggest that there 

might be an ideal range of vitamin D that could vary based on individual characteristics, 

such as ε4 carrier status, and that vitamin D supplementation may be preferential for APOE 

ε4 homozygotes. However, additional research is required to define the precise range of 

vitamin D for optimal cognitive functioning in ε4 carriers and non-carriers, as well as to 

determine whether vitamin D supplementation improves cognitive function in those with 

deficiency.

Pharmacogenomic Considerations

Few pharmacologic AD prevention studies to date have factored in APOE ε4 carrier status 

into their trials. One such study showed that individuals taking antihypertensive medication 

at baseline had a lower risk of AD, and that the risk was decreased to a greater extent in ε4 

carriers compared to non-carriers (61). NSAIDs have also been associated with a decreased 

risk of AD in ε4 carriers (62, 63). However, the ADAPT trial, which randomized non-

impaired subjects to receive naproxen, celecoxib, or placebo, paradoxically showed worse 

cognitive scores in the naproxen and celecoxib groups compared to placebo at two years and 

was stopped prematurely due to an increased risk of negative outcomes (64). In addition, the 

TOMORROW Phase III AD prevention trial was recently terminated as the diabetes drug 

pioglitazone was not found to prevent transition from normal cognition to MCI due to AD 

compared to placebo regardless of APOE ε4 carrier status (65).

New clinical trials, such as the Alzheimer’s Prevention Initiative Generation Study, will 

hopefully clarify the importance of APOE ε4 carrier status on new potential drug targets 
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(66). The Generation Study consists of two ongoing longitudinal trials of APOE ε4 carriers 

with the goal of determining the effectiveness of new medications on preventing the 

development of AD in preclinical AD patients. The results of these trials will help to 

characterize the importance of targeting pharmaceutical-based interventions to at risk 

populations and can ultimately advance the field of clinical precision medicine for AD 

prevention.

AD Comorbidity Considerations

Risk factors for cardiovascular disease, including hypertension, diabetes mellitus, and 

hyperlipidemia, have also been shown to be risk factors for AD and cognitive decline (67). 

The association between these risk factors and APOE ε4 carrier status is discussed below.

Hypertension

While the literature is inconsistent about the risk of AD associated with hypertension in 

individuals over age 60 (68–71), studies indicate that elevated systolic blood pressure (SBP) 

(≥ 160 mm Hg) in midlife is associated with an increased risk of eventual AD (68, 72, 73). 

Hypertension has also been associated with an increased risk of AD and cognitive decline in 

APOE ε4 carriers compared to non-carriers (74, 75). One study investigated the longitudinal 

impact of high SBP and APOE ε4 carrier status on cognitive function in non-impaired 

individuals age 45-68 over a 26-year time frame (74). Compared to non-carriers with normal 

SBP (<160 mm Hg), the relative risk (RR) for poor cognitive function for ε4 carriers with 

normal SBP was 1.3, for non-carriers with high SBP was 2.6, and for carriers with high SBP 

was 13.0 (74). The authors further showed that treatment of hypertension reduced the risk 

for carriers with high SBP from 13.0 to 1.9. In addition, another study showed that elevated 

SBP (≥ 140 mm Hg) or diastolic blood pressure (DBP) (≥ 90 mm Hg) exacerbated Aβ 
deposition in cognitively healthy individuals who were APOE ε4 carriers aged 47 to 89 

years old (75). Therefore, adequate management of blood pressure may be particularly 

important for AD prevention for ε4 carriers, although additional research is necessary to 

determine optimal blood pressure ranges for AD prevention for ε4 carriers in younger and 

older cohorts.

Diabetes Mellitus

Management of Type 2 Diabetes Mellitus (T2DM) is also an important AD prevention 

strategy (76). A meta-analysis reported that four out of five studies evaluating the 

association between T2DM and APOE ε4 carrier status on AD risk had positive associations 

and three were statistically significant, with odds ratios that ranged from 2.4-5.0 (77). Two 

of these studies demonstrated a synergistic effect with a two-fold increased risk of AD in 

individuals with T2DM who were ε4 carriers compared to non-carriers (78, 79). While one 

study demonstrated a negative association between T2DM and APOE ε4, carrier status was 

only provided for 59% of its subjects (80). Overall, these findings demonstrate that ε4 

carriers with T2DM may have an even greater risk of AD and adequate management of 

T2DM may have particular importance for this population for the purposes of AD 

prevention.
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Hyperlipidemia

Hyperlipidemia has been associated with an increased risk of AD (72, 81). For example, one 

study evaluated the impact of midlife hyperlipidemia on the development of AD three 

decades later and showed that the hazard ratio for AD was 1.23 for borderline high 

cholesterol (200-239 mg/dl) and 1.57 for high cholesterol (≥ 240 mg/dl) (81). APOE ε4 

carrier status is associated with higher levels of total cholesterol and LDL cholesterol (82–

84) and lower levels of HDL cholesterol compared to non-carriers (82). However, the risk of 

hyperlipidemia on incident AD may not be the same for ε4 carriers and non-carriers. In one 

study, hyperlipidemia doubled the risk of dementia in ε4 non-carriers but was not associated 

with an increased risk in ε4 carriers (85). Other studies have similarly shown that increasing 

levels of total cholesterol (86, 87) and LDL (87) increased the risk of AD in non-carriers but 

not in carriers. This suggests that managing hyperlipidemia, while important for improving 

cardiovascular risk for all patients, may be particularly important for ε4 non-carriers for AD 

prevention.

Other APOE-Related Considerations

Sex

There are established differences in the effects of APOE ε4 carrier status depending on male 

or female sex (88). One study showed that non-impaired women who were ε4 carriers had 

almost double the risk of converting to MCI or AD compared to non-carriers, while men 

who were carriers had only slightly higher rates of conversion (89). A neuroimaging study 

using FDG-PET showed that women who were ε4 carriers had significantly more brain 

hypometabolism and cortical thinning compared to non-carriers, while the difference 

between ε4 carriers and non-carriers in men was much less substantial (90). However, recent 

evidence suggests that ε4 carrier status may confer the greatest risk for women between the 

ages of 65-75, and may not confer additional risk compared to men outside of that age 

bracket (91). Therefore, it is important to consider sex differences when evaluating for AD 

risk, and additional research may help to elucidate the multi-factorial relationship seen 

among sex, ε4 carrier status, age, and other factors such as menopause.

Genotype Disclosure

The Risk Evaluation and Education for Alzheimer’s Disease (REVEAL) trial was the first 

RCT to evaluate the impact that disclosure of APOE ε4 carrier status had on behavioral 

change in cognitively normal individuals (92). The researchers found that individuals who 

learned they were ε4 carriers reported more behavioral changes related to diet, exercise, 

medications, and vitamins compared to those who learned they were non-carriers. In 

addition, the Food4Me trial demonstrated that ε4 non-carriers informed about their carrier 

status reduced SFA intake less than non-carriers who were not informed (83). These studies 

demonstrate that the act of disclosing ε4 carrier status, as well as non-carrier status, may 

affect behavior and play a role in commitment to interventions, which is critical for AD 

prevention success. While APOE ε4 carrier status is a sensitive topic that requires a 

collaborative discussion between patient and treating clinician, in cases deemed clinically 

appropriate by both parties, disclosing this information may be a beneficial way to 

encourage behavioral change.
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Conclusion and Future Directions

This review indicates that prevention strategies targeted to APOE carrier status may hold a 

great deal of promise. Various findings demonstrate that optimizing physical activity, 

cognitive engagement, alcohol consumption and tobacco use are critical steps toward AD 

prevention, especially in ε4 carriers. Dietary changes also hold substantial importance for 

AD prevention, with specific emphasis on different aspects of diet in carriers versus non-

carriers. Evidence suggests that supplementation with n-3 PUFAs is especially important for 

ε4 carriers, whereas there is a non-linear relationship between vitamin D and cognitive 

functioning, and more evidence is required to determine the optimal range for AD 

prevention. Further research into pharmaceutical targets for AD prevention is also critical, 

and new clinical trials such as the Generation Studies may help to clarify the role of ε4 

carrier status on pharmaceutical-based prevention interventions.

In addition, the management of hypertension and T2DM may warrant special attention in ε4 

carriers for the purposes of AD prevention, while the management of hyperlipidemia may 

warrant special attention in non-carriers. Defining specific treatment goals for these 

comorbidities, as well as investigation into other comorbidities should also be explored in 

the future. While sex is a non-modifiable risk factor, it is important to be aware of the 

different risks associated with ε4 carrier status for men and women in order to optimize AD 

prevention strategies. Finally, the use of genotype disclosure for consenting patients may 

promote behavioral change and compliance with prevention recommendations although 

further study is warranted to determine whether this leads to better outcomes.

As genotyping for APOE ε4 and other genetic risk factors becomes more widely available, 

both commercially and in the healthcare setting, its role in clinical care will become more 

important (93). New technological innovations and tracking devices that facilitate 

monitoring responses to interventions for both patients and clinicians will further aid in 

developing effective AD prevention approaches (93). In light of these advances and potential 

benefits of targeted interventions for ε4 carriers, inclusion of APOE ε4 carrier status in AD 

prevention strategies is likely to be of greater importance in the future.
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