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ABSTRACT: Apolipoprotein E (APOE) genotype is the strongest prevalent genetic risk factor for Alzheimer’s disease
(AD). Numerous studies have provided insights into the pathologic mechanisms. However, a comprehensive un-
derstandingof the impact ofAPOEgenotypeonmicroflora speciation andmetabolism is completely lacking. In this
study,we investigated the association betweenAPOEgenotype and the gutmicrobiome composition inhumanand
APOE–targeted replacement (TR) transgenic mice. Fecal microbiota amplicon sequencing from matched individ-
uals with different APOE genotypes revealed no significant differences in overall microbiota diversity in group-
aggregated human APOE genotypes. However, several bacterial taxa showed significantly different relative
abundance betweenAPOE genotypes. Notably, we detected an association of Prevotellaceae andRuminococcaceae
and several butyrate-producing genera abundances with APOE genotypes. These findings were confirmed by
comparing the gutmicrobiota ofAPOE-TRmice. Furthermore,metabolomic analysis ofmurine fecalwaterdetected
significant differences in microbe-associated amino acids and short-chain fatty acids between APOE genotypes.
Together, these findings indicate that APOE genotype is associated with specific gut microbiome profiles in both
humans and APOE-TR mice. This suggests that the gut microbiome is worth further investigation as a potential
target tomitigate the deleterious impact of theAPOE4 allele on cognitive decline and the prevention ofAD.—Tran,
T. T. T., Corsini, S., Kellingray, L., Hegarty, C., Le Gall, G., Narbad, A., Müller, M., Tejera, N., O’Toole, P. W.,
Minihane,A.-M.,Vauzour,D.APOEgenotype influences thegutmicrobiomestructure and function inhumansand
mice: relevance for Alzheimer’s disease pathophysiology. FASEB J. 33, 000–000 (2019). www.fasebj.org
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The gut microbiome is intimately involved in numerous
aspects of human physiology. Emerging evidence links
perturbations in the microbiome to neurodegeneration
and Alzheimer’s disease (AD), with (neuro)inflammation
proposed as an etiological link (1–3).

The extent to which host genetic variation determines
the microbiome composition is still currently debated.
Indeed, although previous studies have reported that the

microbiomes of humans andmice are associatedwith host
genetic variation (4) and have identified several heritable
bacterial taxa (5–7), other studies have reported a stronger
environmental influence compared with host genetics in
shaping human gut microbiota (8). Thus, the extent to
which human genetics shape microbiome composition
remains unclear.

Apolipoprotein E (APOE) genotype is the strongest
prevalent risk factor for neuropathology and AD (9–11).
ApoEwasoriginally identifiedas a component of systemic
circulating lipoproteins and a member of a family of
apolipoprotein modulators of their metabolism. It has
subsequently emerged as the almost exclusive lipid
transporter in the CNS (12, 13). In humans, APOE exists in
3 different isoforms (apoE2, apoE3 and apoE4), arising
from 3 different alleles (e2, e3, and e4). These alleles give
rise to 3 homozygous (APOE2/E2,APOE3/E3 andAPOE4/
E4) and 3 heterozygous (APOE3/E2, APOE4/E3 and
APOE4/E2) genotypes in humans (14). Generally, 50–70%
of populations presentwith theAPOE3/E3 genotype,with
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the e3 allele accounting for 70–80% of the gene pool, and
the e2 and e4 alleles accounting for 5–10% and 10–15%,
respectively (14).APOE4 carrier status is highly predictive
of dementia and AD, with APOE3/E4 and APOE4/E4 be-
ing at 3–4- and 8–12-fold increased risk and amuch earlier
age of onset (9). Although the etiological basis of APOE4-
neuropathological associationshasbeenwidely researched
and reported, the main etiological mechanism has not
been clearly defined. The ApoE protein is involved in
multiple biologic processes, including lipoprotein me-
tabolism (15), intracellular cholesterol utilization (16), cell
growth (17), immunoregulation, (neuro)inflammation (18,
19), and neuroprotection (20). Although the role of ApoE
in gut chylomicron metabolism and in inflammation
has been described, and gut microbiota modulation im-
proves the cardio-metabolic profile in ApoE-deficient
mice (Apoe2/2) (21), the impact of APOE genotype on in-
testinal integrity and gut microbiome composition and
metabolism is currently unknown.

In the present study, we explore the hypothesis that
APOE variation influences the microbiome composition
and its subsequent metabolism. Our experiments using
human fecal samples and APOE–targeted replacement
(TR) mice revealed significantly different relative abun-
dance between bacterial taxa according to APOE geno-
types. Furthermore, using a metabolomic approach,
differences inmicrobe-associated amino acids and short-
chain fatty acids (SCFAs) according to APOE genotypes
were also observed. Taken together, our findings in-
dicate that APOE genotype associates with specific gut
microbiome profiles, which may affect the host metab-
olism and ultimately contribute to AD pathology.

MATERIALS AND METHODS

Ethics approval and consent to participate

The research involving human material has been performed
in accordance with the Declaration of Helsinki. The study
protocols were approved by the National Research Ethics
Service Committee [13/EE/0066 for the chocolate, orange
juice, and blackberry (COB) study, NCT01922869; 14/EE/
0189 for the Cognitive Ageing, Nutrition, and Neurogenesis
(CANN) study, NCT02525198], and all participants con-
sented to provide stool samples and to the use of the stored
samples for research purposes.

All experimental procedures and protocols involving animals
were reviewed and approved by theAnimalWelfare andEthical
Review Body and were conducted within the provisions of the
Animals (Scientific Procedures) Act of 1986 (Reference 70/8710).

Participants, sample collection, APOE genotyping,
and biochemical analysis

Fifty-six healthy participants, aged between 56 and 78 yr, were
prospectively selected according to APOE genotype from the
COB (NCT01922869) and the CANN (NCT02525198) studies for
the analysis of their gut microbiota speciation. Participants were
provided with fecal collection kits, which included a stool col-
lection bag and an ice pack. Theywere asked to defecate directly
into the bag,whichwas securedandplacedwith the ice pack into
an insulated container and delivered to the study scientist. The

samples were then homogenized by physical manipulation be-
fore aliquots were taken and stored at280°C.

APOE genotyping was carried out as previously described
(22). Briefly,DNAwas isolated fromthebuffy coat layerof8mlof
blood collected into sodium heparin mononuclear cell prepara-
tion tubes with the use of the Qiagen DNA blood mini kit (Qia-
gen, Germantown, MD, USA). Allelic discrimination of the
APOE gene variants was conducted with TaqMan PCR tech-
nology (7500 Instrument; Thermo Fisher Scientific, Waltham,
MA, USA) and Assay-on-Demand single nucleotide poly-
morphism genotyping assays (Thermo Fisher Scientific). The
APOE haplotypes (E2/E3, E3/E3, E3/E4, and E4/E4) were de-
termined from the alleles for the APOE single nucleotide poly-
morphisms rs7412 and rs429358. Twenty-four participants were
selectedasAPOE4 carriers (APOE3/4andAPOE4/4; 12menand
12 women), with 32 participants selected as APOE4 noncarriers
(APOE2/3 and APOE3/3; 16 men and 16 women), with the se-
lectionprocessmatching thegenotypegroups for age, bodymass
index (BMI), and gender.

Serum LPS binding protein (LBP) (ab213805; Abcam, Cam-
bridge,MA,USA)andhaptoglobin (ab108856;Abcam)plasmatic
concentrations were detected by ELISA kits according to the
manufacturer’s instructions. The assay range for the LBP and the
haptoglobin ELISA kits was 1.56–100 and 0.078–20 mg/ml, re-
spectively. Serum samples were diluted until the LBP or hapto-
globin concentrations were in the range of these kits.

Human fecal bacterial DNA extraction and 16S rRNA
amplicon sequencing

Total genomic DNA were isolated from human fecal samples
using DNeasy Blood and Tissue Kit (Qiagen) following the
manufacturer’s instructions with some modifications following
the repeated bead-beating method (23). The V3–V4 hyper-
variable region of the 16S rRNAgenewas amplified to generate a
fragment of 460 bp using the forward primer: 59-TCG-
TCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGG-
GNGGCWGCAG-39, and reverse primer: 59-GTCTCGTGGGCT-
CGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT-
CTAATCC-39 (24). The Illumina overhang adapter sequences
(Illumina, San Diego, CA, USA) were added to the 16S rRNA
gene specific primer sequences. Each 30 ml PCR reaction
contained 10 ng/ml microbial genomic DNA, 0.2 mM of each
primer, 15 ml of 23 Phusion Taq High-Fidelity Mix, and
10.6ml of nuclease-freewater. The PCR conditionswere initial
denaturation 98°C for 30 s; 25 cycles of 10 s at 98°C, 15 s at
55°C, and 20 s at 72°C; and 72°C for 5min for final elongation.
The SpriSelect Reagent Kit (BeckmanCoulter, Brea, CA, USA)
was used to purify the amplicons. The Qubit double-stranded
DNA High Sensitivity Assay Kit (Thermo Fisher Scientific)
was followed for quantification and pooling. Library prepa-
ration was carried out by Teagasc (Oak Park, Ireland) on the
Illumina MiSeq platform using paired-end Illumina se-
quencing run (2 3 250 bp).

APOE-TR mice

Twenty young (4 mo; n = 10/genotype) and 12 old (18 mo; n = 6
per genotype) male human APOE3 [B6.129P2-Apoetm2(APOE*3)Mae

N8] and APOE4 [B6.129P2-Apoetm2(APOE*4)Mae N8] TR mice
homozygous for the human APOE3 or APOE4 gene (Taconic
Farms, Germantown, NY, USA) were used in these experi-
ments (n = 10/genotype) (25). The model was created by Dr.
Maeda (University of North Carolina, USA) by targeting the
murine APOE gene for replacement with the human APOE3
and APOE4 allele in E14TG2a embryonic stem cells and
injecting the targeted cells into blastocysts. Resultant chimeras
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were backcrossed to C57BL/6 for 8 generations (N8). Mice
were housed 2 per cage and were maintained in controlled
environment (21°C; 12-h light/dark cycle; light from 7:00 AM)
and fed a standard chow diet (RM3-P; Special Diets Services,
Witham,United Kingdom) for the duration of the experiments.

Mice genomic DNA extraction and 16S rRNA
amplicon sequencing

Bacterial genomicDNAwas extracted from fecal samplesusinga
FastDNA SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA,
USA) with 3 bead-beating periods of 1 min (26). Bacterial DNA
concentration was normalized to 1 ng/ml by dilution with DNA
elution solution (MP Biomedicals) to produce a final volume of
20 ml. Normalized DNA samples were sent to the Centre for
Genomic Research (Liverpool, United Kingdom) for PCR am-
plification of the 16S rRNA gene and paired-end Illumina se-
quencing (2 3 250 bp) on the MiSeq platform. The V4 region of
the 16S rRNA gene was amplified to generate a 254-bp
insert product as previously described (27). The first round
of PCR was performed using the forward primer: 59-
ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN-
GTGCCAGCMGCCGCGGTAA-39, and the reverse primer: 59-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGA-
CTACHVGGGTWTCTAAT-39, which include recognition
sequences that enable a second nested PCR, using the N501f
and N701r primers, to incorporate Illumina adapter se-
quences and barcode sequences. The use of these primers
enables efficient community clustering for the length of reads
obtained through Illumina sequencing, and this method
also allows for high-throughput sequencing. Sequencing
data were supplied in fastq format with adaptors already
trimmed.

Metabolomic analyses

Metabolites were analyzed and quantified by [1H] NMR
analysis. The preparation method was similar to that pre-
viously described (28–31). Fecal contents were extracted from
mice caeca and prepared for [1H] NMR using procedures
validated and published in our laboratory for fecal metab-
olomics (32–34). Briefly, 20 mg of frozen fecal materials were
thoroughly mixed on a vortex with 1 ml of saline phosphate
buffer [1.9 mM Na2HPO4, 8.1 mM NaH2PO4, 150 mM NaCl
(MilliporeSigma, Burlington, MA, USA)], and 1 mM trime-
thylsilylpropanoic acid [sodium 3-(trimethysilyl)-propionate-d4]
in deuterated water (Goss Scientifics, Crewe, United Kingdom),
followed by centrifugation (18,000 g, 1 min). Supernatants were
removed, filtered through 0.2 mm Fluoropore polytetrafluoro-
ethylenemembrane filters (MilliporeSigma), and stored at220°C
until required.

After mixing and centrifugation, 500 ml was transferred into a
5-mm NMR tube for spectral acquisition. High resolution [1H]
NMR spectra were recorded on a 600-MHz Bruker Avance spec-
trometer fitted with a 5-mm TCI proton-optimized triple reso-
nanceNMR inverse cryoprobe and a 60-slot autosampler (Bruker,
Billerica,MA,USA). Sample temperaturewas controlled at 300K.
Each spectrum consisted of 128 scans of 32,768 complex data
points with a spectral width of 14 ppm (acquisition time 1.95 s).
The noesypr1d presaturation sequence was used to suppress the
residual water signal with low power selective irradiation at the
water frequency during the recycle delay (D1 = 2 s) and mixing
time (D8 = 0.15 s). A 90° pulse length of 8.8 ms was set for all
samples. Spectrawere transformedwith a 0.3-Hz line broadening
and zero filling, manually phased, baseline corrected, and refer-
enced by setting the trimethylsilylpropanoic acidmethyl signal to
0ppm.Metaboliteswere identifiedusing information found in the

literature or on the Human Metabolome Database (http://www.
hmdb.ca/), and by use of the 2-dimensional NMR methods, [1H]-
[1H] correlation spectroscopy, [1H]-[13C] heteronuclear single
quantum correlation, and [1H]-[13C] heteronuclear multiple bond
correlation spectroscopy (35) and quantified using the software
Chenomx NMR Suite 7.0 (Supplemental Fig. S1). Details on pa-
rameter settings for 2-dimensional NMR can be found in Le Gall
(36).

Analysis of 16S amplicon sequencing data from
humans and mice

Bioinformatics analysis of 16S amplicon sequencing data
from humans and mice were performed using the Quanti-
tative Insights into Microbial Ecology (QIIME) v.1.9.1 (37)
and uSearch v.8.1 (38) software and the following procedure.
First, the paired-end reads were merged using Fast Length
Adjustment of Short Reads (FLASH) v.1.2.8 (39); then,
adaptors were removed from reads using cutadapt v.1.8.3
(40). The sequences were demultiplexed and filtered using
QIIMEwith the split_libraries_fastq.py script; all reads with
a quality score below 19 were removed. Reverse primers
were removed using QIIME with the truncate_reverse_
primer.py script. An operational taxonomic unit (OTU) table
was obtained using uSearch. Unique sequences were filtered
(derep_fulllength) and sorted by length (sortbylength) with
a length of 373–473 nt for the V3–V4 region and a length of
237–271 nt for the V4 region. After singleton removal (sort-
bysize), the remaining sequences were clustered into OTUs
at a default 97% sequence identity (cluster_otus) and filtered
for chimeras against the ChimeraSlayer reference database
(uchime_ref) (41). All sequences were mapped against this
database (usearch_global) to generate an OTU table. Clas-
sification of representative sequences for each OTU was
carried out using mothur v.1.36.1 (42) against the 16S rRNA
reference of Ribosomal Database Project database trainset 14
(43). To ensure an even sampling depth, we used QIIME to
generate rarefied OTU tables with the single_rarefaction.py
script and to compute a diversity metrics (chao1, phyloge-
netic diversity, Shannon’s diversity index, evenness) with
the alpha_rarefaction.py script and b diversity metrics
(weighted UniFrac, unweighted UniFrac, and Bray-Curtis
distances) with the beta_diversity.py script.

Statistical analysis

Statistical analysis was carried out using R v.3.5.1 software
packages (44). The significant differences in clinical measures, a
diversity, and abundances of each taxonomic unit between $2
groupsweredetectedusing theMann-WhitneyU testorKruskal-
WallisH testwithDunn’smultiple comparison test, respectively.
The P values were corrected for multiple testing by Benjamini-
Hochbergcorrection to control falsediscoveryrate.Differences in
b diversity were determined using permutational multivariate
ANOVA (PERMANOVA) (vegan R package; https://cran.r-
project.org/package=vegan).

Multivariate statistical analysis (sparse partial least squares
discriminant analysis and metabolite set enrichment analysis) of
the [1H] NMR data was carried out using the MetaboAnalyst R
packagev.1.0.0 (https://www.metaboanalyst.ca/).Coinertia analysis
(COIA) was used to investigate the relationships between the
fecal metabolome and the composition of microbiota at OTU
level using the coinertia function in the ade4Rpackage (45).Only
OTUs present in at least 50% of the samples were used in COIA.
Overall similarity in the structure between 2 data sets were
measuredbyRV coefficient. The significanceof theRV coefficient
was tested using the Monte Carlo permutation test (46).
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RESULTS

Descriptive statistics of human
APOE-genotyped cohorts

A total of 56 fecal samples were analyzed from partic-
ipants of the COB (NCT01922869) and the CANN
studies (NCT02525198) (Norwich Clinical Centre,
Norwich, United Kingdom) with the 4 APOE genotype
groups selected to be matched for sex, age, and BMI
(Table 1 and Supplemental Table S1).

Difference in human gut microbiota
composition between APOE genotypes

The V3–V4 hypervariable region of the 16S rRNA gene
was PCR amplified from fecal samples collected from
participants to generate an amplicon of ;460 bp. Se-
quencing this amplicon allows determination of micro-
biota composition. The reads were clustered at a 97%
similarity threshold into 3314 unique OTUs or sequence-
based bacterial classification, approximating to species.
The total OTUs were assigned to 15 phyla, 27 classes, 43
orders, 70 families, and155uniquegenera across the entire
data set. The vast majority (99.5%) of all sequences
were affiliated to 5 dominant phyla, mainly in the Firmi-
cutes (82.2 6 10.8%), with lower assignment to phyla
Bacteroidetes (7.7 6 6.3%), Actinobacteria (3.8 6 4.5%), Pro-
teobacteria (3.2 6 9.5%), and Verrucomicrobia (2.6 6 5.1%)
(Supplemental Fig. S2A). After rarefaction with a depth of
8736 reads per sample, a diversity (net diversity within a
single sample/subject) was measured by calculating 3
diversity indices, namely, chao1 (richness), phylogenetic
diversity, and Shannon diversity index. None of these
metrics was significantly different between APOE geno-
types (Supplemental Fig. S3A). Similarly, there was no
significant difference in any of the a diversity metrics be-
tween males and females (Supplemental Fig. S3B). How-
ever, the microbiota a diversity of obese subjects (n = 3)
was significantly lower than that in normal weight and
overweight subjects (P, 0.05, Supplemental Fig. S3C), in
line with previous observations (47). b diversity analysis
(which measures interindividual microbiota relatedness)
was performed using principal coordinates analysis
(PCoA) clustering based on unweighted and weighted
UniFrac distances. A PERMANOVA test was employed
for testing associations between clinical parameters and
microbiota composition and results are given in Supple-
mental Table S2. There was no difference in b diversity of
gut microbiota composition according toAPOE genotype

(Supplemental Fig. S4A). However, we observed a weak
but significant association between microbiota composi-
tion and gender and BMI categories (Supplemental Fig.
S4B, C).

Although a and b diversity analyses of the gut micro-
biota did not discriminate between APOE genotypes,
these are global measures that detect relatively large dif-
ferences in microbiota structure. We therefore questioned
whether the relative abundance of any taxa might differ
between these genotypes, using the Kruskal-WallisH test
to compare all taxa at various phylogenetic assignment
levels across all genotypes. We observed that the relative
abundanceof thephylumFirmicutesandorderClostridiales
was higher in subjects of the APOE2/E3 genotype than in
APOE3/E4 or APOE4/E4 (P , 0.05; Fig. 1 and Supple-
mental Table S3). Furthermore, at the bacterial family
level, the abundance of Ruminococcaceae (a family of fer-
mentative anaerobes associated with fiber degradation
and SCFA production) was higher in APOE2/E3 than in
APOE3/E3 (P=0.004),APOE3/E4 (P=0.002), orAPOE4/E4
(P = 0.072). On the other hand, the abundance of Pre-
votellaceaewas lower in APOE2/E3 than the other 3 APOE
genotypes (APOE3/E3, P = 0.008; APOE3/E4, P = 0.085;
APOE4/E4, P = 0.015) and was slightly more abundant at
close to significant levels (P = 0.088) in APOE3/E4 com-
paredwithAPOE4/E4withmean of relative abundance of
1.79 vs. 1.40% (Fig. 1C and Supplemental Fig. S2B and
Supplemental Table S3). Within the Ruminococcaceae fam-
ily, 3 genera, including Clostridium cluster IV, Clostridium
cluster XIVa, and Gemmiger, were statistically significant
and differentially abundant according to APOE geno-
types. The abundance of Clostridium cluster IV was lower
inAPOE3/E3 than inAPOE2/E3 (P= 0.027) andAPOE4/E4
(P = 0.039), whereas the abundance of Clostridium cluster
XIVa was higher in APOE4/E4 than in APOE2/E3 (P =
0.044) and APOE3/E4 (P = 0.078). Higher presence of
Gemmiger was observed in fecal samples from APOE2/E3
comparedwithAPOE3/E3 (P=0.0499) andAPOE3/E4 (P=
0.086). Moreover, we observed a higher abundance of
Roseburia in fecal samples at close to significant levels (P,
0.1) inAPOE3/E3 comparedwith 3 otherAPOE genotypes
and in APOE3/E4 compared withAPOE4/E4 (Fig. 1D and
Supplemental Fig. S2C and Supplemental Table S3).

To determine possible associations between APOE ge-
notypes and microbial translocation, we measured the
plasma levels of 2 biomarkers of intestinal integrity,
namely, haptoglobin and LBP. No significant differences
were observed in the levels of haptoglobin and LBP
(Supplemental Table S1) according to genotype. Further-
more, no significant correlationwas observed between the

TABLE 1. Clinical characteristics of participants according to APOE genotypes

Parameter E2/E3 E3/E3 E3/E4 E4/E4 Pa

n 14 18 18 6
Age (yr) 68.6 6 4.6 68.5 6 5.0 68.6 6 3.0 67.7 6 6.1 1.0
Sex [male:female (n)] 7:7 9:9 9:9 3:3 1.0
BMI (kg/m2) 25 6 2.2 26.3 6 2.6 26.1 6 3.1 25 6 1.9 0.42

Data presented as means 6 SD. aSignificance was calculated by the Kruskal-Wallis H test.
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clinical parameters and both the weighted and un-
weighted UniFrac distances (Supplemental Table S2).

Difference in murine gut microbiota
composition between APOE genotypes

We next sought to investigate if APOE genotype–gut
microbiota interactions in humanswere evident in human
transgenic homozygous APOE3- and APOE4-TR mice at
4 mo (young) and 18 mo (old) of age. Considering the
average lifespan of laboratory mice, 18 mo of age would
correspond to about 65 human years (48), which approx-
imates our human participants’ age (68.56 4.4 yr).

Theirgutmicrobial communitieswereanalyzedbasedon
sequencing theV4hypervariable region (;254bp)of the16S
rRNA gene. There was no significant difference in a di-
versity between APOE3 and APOE4 genotypes. However,
in line with our previous studies of microbiota in ageing
humans (49) and rodents (50), both chao1 and phylogenetic
diversity were much higher in young mice compared with
old mice (P , 0.001 and Supplemental Fig. S5). Moreover,
UniFrac distances (unweighted and weighted) PCoA
showed that fecal microbial profiles of young mice sepa-
rated significantly from those of old mice (PERMANOVA,
P = 0.001; Fig. 2A). Within each age group, both UniFrac
measures showed significant microbiota differences be-
tweenAPOE3andAPOE4genotypes,with thePvalue from
PERMANOVA analysis,0.005 (Fig. 2A). These differences

could be explained by differences detected in the relative
abundance of dominant taxa, of which the most dominant
were Firmicutes (62.8 6 14.4%) and Bacteroidetes (32.3 6
14.8%), followed by Proteobacteria, Verrucomicrobia, and
Deferribacteres accounting for ,5% in total (Supplemental
Fig. S6).

Analysis of differentially abundant taxa between
APOE3-TR and APOE4-TR animals at the phylum level
revealed that Deferribacteres in combined young and old
mice were notably higher in the APOE4-TR mice com-
pared with the APOE3-TR mice, whereas the opposite
was true forCandidatus Saccharibacteria. In addition, lower
relative abundance of Proteobacteriawere seen in APOE4-
TR young mice when compared with the APOE3-TR
young mice (Supplemental Fig. S7 and Supplemental
Table S4).Althoughnosignificantdifferencewas found in
aggregated Firmicute or Bacteroidetes phylum abundance
between APOE genotypes, we observed an increase in
Firmicutes:Bacteroidetes ratio in old mice when compared
with young mice (P , 0.001; Supplemental Fig. S8), in
agreement with a previous C57BL/6Nmouse study (51).
At the order level, Deferribacterales abundance in com-
bined age groups was significantly higher in the APOE4-
TR mice compared with the APOE3-TR mice. Addition-
ally, Clostridiales, Erysipelotrichales, and Desulfovibrionales
in young mice were significantly different in relative
abundance between the 2 APOE genotypes. The increase
of Lachnospiraceae and Deferribacteraceae abundance and
decrease of Bacteroidaceae abundance at family level in

Figure 1. Box plot of the relative abundance distribution of selected taxa at phylum level (A), order level (B), family level (C),
and Clostridium cluster or genus level (D). Significant difference was observed in selected bacterial taxon abundance between
human APOE genotypes. Significance values were calculated by the Kruskal-Wallis H test for all genotypes, followed by Dunn’s
multiple comparisons and adjusted for false discovery rate using the Benjamini-Hochberg correction. *P , 0.05.
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APOE4 transgenes compared with APOE3 was detected
in combined age groups. Desulfovibrionaceae, Clostridiales
Incertae Sedis XIII, Rikenellaceae, Prevotellaceae, and Erysi-
pelotrichaceaewere also found to be significantly different
between APOE genotypes in young mice (Fig. 2B, Sup-
plemental Fig. S7, and Supplemental Table S4). Those
differentially abundant families by APOE genotype were
reflected by Mucispirillum, Clostridium cluster XIVa,
Butyricicoccus,Odorobacter,Enterorhabdus, andBacteroides
in combinedagegroupsandbyMucispirillum,Desulfovibrio,
Butyricicoccus,Bacteroides,Alistipes, and Johnsonella inyoung
mice at the genus level (Fig. 2B, Supplemental Fig. S7,
Supplemental Table S4).

Fecal metabolite associations with APOE
genotype and age

In order to improve our understanding of the relation-
ships between metabolite and microbiota composition
in the gut, we performed metabolomic analyses of fecal
water prepared from caecal contents. Sparse partial
least squares discriminant analysis (sPLS-DA) showed
a trend for separation according to age and APOE ge-
notypes (Supplemental Fig. S9). Two-wayANOVAwas
therefore performed to investigate interactions between
age and APOE genotype. Seven metabolites, AMP, a
ketoisovaleric acid, glucose, glycine, lactate, oxocaproate,

Figure 2. Differences in gut microbiome composition between APOE3-TR and APOE4-TR mice. A) Principal coordinates analysis
(PCoA) based on unweighted and weighted UniFrac distances of partial sequences of bacterial 16S rRNA genes showing gut
microbiota b diversity grouped by age and APOE genotypes. Samples are projected onto the first (PC1) and second (PC2)
principal coordinate axes. b diversity analysis reveals significant gut microbiota differences between APOE3 and APOE4 genotype
transgenic mice. Significant differences between groups were calculated by PERMANOVA tests. B) Comparison of relative
abundance taxa between APOE3 and APOE4 in young mice samples, old mice samples, and both age groups combined were
represented by log2 fold changes. Significant differences in relative abundance of gut microbiota at the family and genus levels
between APOE3-TR and APOE4-TR mice were detected in young mice, old mice, and in combined analysis of young and old mice.
Statistical significances were determined by the Mann-Whitney U test and were corrected for the multiple comparison using the
Benjamini-Hochberg adjustment. E3Y, APOE3 young mice; E4Y, APOE4 young mice; E3O, APOE3 old mice; E4O, APOE4 old
mice. *P , 0.05.
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Figure 3. Fecal metabolome analysis of APOE3-TR and APOE4-TR mice. A) Heatmap and cluster analysis of 2-way ANOVA of
significantly differentially abundant metabolites grouped by age and APOE genotype. Four clusters within significantly
differentially abundant metabolites showed distinct APOE genotype and age correlations. Clustering was obtained following
similarity analysis using the Ward hierarchical algorithm and Euclidean distance metrics. B) Co-inertia analysis (COIA) of the
association between metabolites and microbiota composition in the gut. The left panel shows the COIA of the microbiota
principal component analysis (solid circle) at OTU level and the principal component analysis of metabolomics (empty circle);
length of arrow indicates the divergence between 2 data sets. The right panel shows coinertia of metabolome and microbiota

(continued on next page)
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and xanthine were present at significantly different
levels in age-APOE genotype interaction, whereas
39 and 19 metabolites were significantly different in
age groups and APOE genotype groups, respectively
(Supplemental Fig. S10 and Supplemental Table S5).
Four clusters of all significant metabolites had distinct
correlations. Cluster A, comprising 5 metabolites (lac-
tate, pyruvate, fumarate, hypoxanthine, and uracil),
had inverse direct correlations with APOE4-TR old
mice and had strong direct correlations with 3 other
groups. However, cluster B and cluster C metabolites
were associated with age. Ten metabolites in cluster B
(methylamine, acetate, butyrate, propionate, arabinose,
xylose, succinate, glucose, AMP, GTP) were more
abundant in young mice, especially in APOE3-TR
young compared with old mice. Fourteen metabolites
in cluster C (asparagine, alanine, tryptophan, threo-
nine, tyrosine, lysine, phenylalanine, glutamate, histi-
dine, leucine, glutamine, valine, isoleucine, methionine)
showed an opposite trend. Cluster D metabolites were
divided into 2 subclusters: cluster D1, comprising 4
metabolites (2-oxoisocaproate, a-ketoisovalerate, 3-
methyl-2-oxovalerate, urocanate), had direct correla-
tions with APOE4-TR young mice; cluster D2, including
14 metabolites (isobutyrate, 1,3-dihydroxyacetone, lac-
taldehyde, aspartate, ornithine, ribose, xanthine, choline,
glycine, creatine, taurine, 2-methylbutyric acid, ethanol,
and formate), had positive correlations with old mice
(Fig. 3A). In addition, metabolite set enrichment analysis
was used to identify significantly enriched pathways in
metabolomics data associated with APOE genotype and
age. Of the top 50 assigned pathways, the significant
pathways in APOE genotype were ammonia recycling,
urea cycle, and alanine metabolism (Supplemental Fig.
S11 and Supplemental Table S6), whereas the significant
pathways in age were ammonia recycling, urea cycle,
glycine and serine metabolism, glutamate metabolism,
and alanine metabolism (Supplemental Fig. S11B and
Supplemental Table S7).

COIA was carried to explore the correlation between
the composition of microbiota at OTU level and the fecal
metabolome (Fig. 3B). The Monte Carlo permutation test
revealed a high overall similarity in the structure between
the 2 data sets, which was statistically significant (RV co-
efficient = 0.685;P= 0.01). The first 4 axes represented 72.5,
8.9, 7.0, and 2.6% of the explained variance, respectively,
and so the analysis focused on the first axis. Each sample is
represented by an arrow, where length of arrow indicates
the divergence between 2 data sets. We observed that the
aggregate arrow length was shorter in APOE4mice com-
pared with that in APOE3mice, which indicated a higher
consensus between microbiota composition and metabo-
lites of APOE4 mice compared with APOE3 mice. The
metabolites and OTUs that strongly correlated in the

COIA axes were plotted on the first 2 COIA axes (Sup-
plemental Fig. S12). Metabolites and bacterial OTUs were
projected onto the same direction as samples, indicating
that theyweremoreabundant in those samples. Therewas
an agreement between the metabolite abundance and the
specific taxon abundance. Notably, SCFAs, including ac-
etate, butyrate, and propionate, were located in the di-
rection of butyrate-producing bacteria from Clostridium
cluster IV genus and the families Ruminococcaceae and
Lachnospiraceae.

DISCUSSION

Although several recent studies have implicated a link
between the gut microbiome, SCFAs, and the develop-
ment of AD (3, 52–56), there is no direct study that es-
tablishes a link between gut microbiota composition and
the strongest genetic risk factor for AD, APOE genotype.
The current study marks the first analysis that compares
gut microbiota composition in humans and transgenic
mice with different APOE genotypes. Analysis of 16S
rRNAgene sequences and fecalmetabolome showed that
APOE genotype correlatedwith abundance differences of
several gut bacterial taxa, whichmay drive the difference
in amino acids and SCFAs levels.

Higher levels of Prevotellaceae were evident in APOE3/
E3 carriers relative to other genotype subgroups, whereas
higher levels of Ruminococcaceae were correlated with the
APOE2/E3 genotype (Fig. 1 and Supplemental Table S3)
relative to APOE4 carriers. Similar associations were ob-
served inAPOE-TR transgenic animalswith an increase in
Prevotellaceae abundance inAPOE3 youngmice compared
with APOE4 young mice in this study Parikh (57). In-
terestingly, loss of these bacteria has been reported to
negatively correlate with neurodegenerative disorders
and were noted as being less abundant in patients with
Parkinson’s disease (57) and AD (3). A reduction of Pre-
votellaceae influenced mucin synthesis and increased mu-
cosal permeability, allowing local and systemic exposure
to bacterial endotoxin, which may lead to the accumula-
tion of a-synuclein in the colon (58, 59). Aggregation-
prone proteins such as b-amyloid and a-synuclein can
propagate fromthegut to thebrainvia thevagusnerve (60)
and contribute to the pathogenesis of Parkinson’s disease,
AD, and other neurodegenerative disorders (61–64).
Ruminococcaceae are involved in the production of SCFAs,
such that their depletion is causally linked to inflammation
(65–67). These findings suggest that these bacteria might
contribute to the protective effects of APOE2 and APOE3
alleles against AD relative to theAPOE4 genotype (10, 68,
69).

The high abundance of Ruminococcaceae in subjects of
the APOE2/E3 genotype was reflected by Gemmiger at the
genus level. Gemmiger are strictly anaerobic bacteria that

data, represented by arrow length between the 2 data points per sample, grouped according to APOE genotype or age. A high
overall similarity was found in the structure between the 2 data sets, which was statistically significant, and a higher concordance
was found between microbiota composition and metabolites of APOE4 mice compared with APOE3 mice. Length of arrow was
estimated using Euclidean distance measurement. E3Y, APOE3 young mice; E4Y, APOE4 young mice; E3O, APOE3 old mice; E4O,
APOE4 old mice. *P , 0.05.
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ferment a variety of carbohydrates to produce formic and
N-butyric acids, often with small amounts of acetic, lactic,
succinic, malonic, and pyruvic acids (70). In addition, we
observed differences between APOE genotypes in Clos-
tridium cluster IV, Roseburia, and Clostridium cluster XIVa,
which are able to convert dietary fibers to SCFAs (71, 72).
Although the butyrate-producing bacteria Clostridium
cluster IVweremodestly less abundant in humanAPOE3/
E3 individuals, they couldbe substitutedbyRoseburiawith
an increased abundance of these bacteria in the APOE3/
E3. A slight increase of Clostridium cluster XIVa from
Lachnospiraceae was seen in the human APOE4/E4 geno-
type, which is consistent with the murine data. However,
the increase of this genus inAPOE4/E4may not substitute
for the reduction of other butyrate-producing bacteria.
Additionally, several genera, which were not correlated
with APOE genotype in human gut microbiomes, were
significantly different between APOE3 and APOE4 geno-
types inmurine gut microbiomes. These taxa could not be
detected in human data because of: 1) absence of some
mouse gutmicrobiota in humans, suchasMucispirillum, 2)
differences in relative abundance of each individual taxa,
and 3) complexity in interactions of human gutmicrobiota
with genetics, diet, and other environmental factors.

Incorporating the gut microbiota data with the
corresponding metabolites in fecal water resulted in
fecal samples across the APOE genotype being dis-
criminated based on their metabolomic profiles. The
lower concentrations of several fatty acids, especially
SCFAs and their precursors (lactate and succinate),
that were detected in APOE4 old mice could be due to
loss of butyrate-producing bacteria, similar towhatwe
observed in humans with anAPOE4/E4 genotype (Fig.
1 and Supplemental Table S3). Although lower levels
of SCFAs were noted in old APOE3 mice, the lactate
level was higher in this group, which is able to convert
to butyrate by a subset of Lachnospiraceae, including
Eubacterium hallii and Anaerostipes caccae (73). Simi-
larly, Bacteroides, which were significantly more
abundant in APOE3 mice, have been reported to have
propionate-producing capacity through the succinate
pathway (74). Several SCFAs have been shown to inhibit
the formation of toxic soluble b-amyloid aggregates in
vitro (75) and consequently decrease the risk of AD. In-
terestingly, cosegregation of the fecal metabolomic pro-
files and the gut microbiome profiles as revealed by
COIA suggests that the differences in gut microbiota
associated with APOE genotype and age in APOE-TR
mice are reflected in the segregation of metabolites,
whichmaybe clinically relevant. Specifically, SCFA level
and the relative abundance of certain species from Clos-
tridium cluster IV, Ruminococcaceae, and Lachnospiraceae
showed a positive correlation. Future studies should
further investigate strain level differences between
APOE genotypes, the metabolic capacity of the micro-
biome, and the metabolomic profiles of fecal water
extracts.

The collective evidence here suggests a link between
APOE genotypes and gut microbiome composition. Loss
of butyrate-producing bacteria and SCFAs in APOE4
carriers might drive the impact of the APOE4 allele on

neuropathology. Our findings suggest a possible role of
gut microbiota butyrate-producing bacteria as an in-
tervention point tomitigate the impact ofAPOE genotype
in the development of AD.
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39. Magoč, T., and Salzberg, S. L. (2011) FLASH: fast length adjustment
of short reads to improve genome assemblies. Bioinformatics 27,
2957–2963

40. Martin, M. (2011) Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet J. 17, 10–12

41. Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V.,
Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren,
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