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Significant knowledge about the pathophysiology of 
Alzheimer’s disease (AD) has been gained in the last century; 
however, the understanding of its causes of onset remains 
limited. Late-onset AD is observed in about 95% of patients, 
and APOE4-encoding apolipoprotein E4 (ApoE4) is strongly 
associated with these cases. As an apolipoprotein, the 
function of ApoE in brain cholesterol transport has been 
extensively studied and widely appreciated. Development of 
new technologies such as human-induced pluripotent stem 
cells (hiPSCs) and CRISPR-Cas9 genome editing tools have 
enabled us to develop human brain model systems in vitro 
and readily manipulate genomic information. In the context 
of these advances, recent studies provide strong evidence 
that abnormal cholesterol metabolism by ApoE4 could be 
linked to AD-associated pathology. In this review, we discuss 
novel discoveries in brain cholesterol dysregulation by ApoE4. 
We further elaborate cell type-specific roles in cholesterol 
regulation of four major brain cell types, neurons, astrocytes, 
microglia, and oligodendrocytes, and how its dysregulation 
can be linked to AD pathology.
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INTRODUCTION

Alzheimer’s disease (AD), a progressive neurodegenerative 

disease, is one of the most common forms of irreversible de-

mentia. Patients with AD suffer from cognitive impairment 

including language problems, mood changes, as well as 

memory loss. AD brains display amyloid-beta (Aβ) plaques, 

tau tangles, synaptic degradation, and neuronal loss. Among 

these neurobiological changes, Aβ plaque is considered to 

be one of the major hallmarks of AD because of its early ap-

pearance during the progression of the disease. Therefore, 

a major focus of ongoing research has been identifying the 

mechanisms of Aβ plaque formation and aggregation to 

target Aβ metabolism (O'Brien and Wong, 2011; Selkoe and 

Hardy, 2016). Although many studies and clinical trials for 

candidate drugs are currently underway, it is not yet clear 

how AD progresses, and no effective treatment for the dis-

ease exists. Currently-available drugs such as cholinesterase 

inhibitors only delay the onset of symptoms.

 While early-onset AD pathology has been shown to be 

associated with genetic mutations in coding regions for 

proteins involved in Aβ metabolism (e.g., amyloid precursor 

protein; APP, presenilin 1 and 2; PSEN1 and PSEN2), such 

mutations were not consistently observed in late-onset AD 

(LOAD), which comprises about 95% of patients; thus these 

cases have long been believed to be sporadic. However, 

recent genome-wide association studies revealed that com-
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pared to cognitively normal controls, several genetic variants 

are frequently observed in patients with LOAD, suggesting 

a strong association of these variants with late-onset cases 

(Kunkle et al., 2019; Lambert et al., 2013). Genes that con-

tain these genetic variants or are closely located to them are 

not those typically associated with Aβ generation or cleavage, 

rather these are genes that are associated with various cellu-

lar functions related to immune responses, endocytosis, and 

cholesterol metabolism (Karch and Goate, 2015). Among 

identified genetic risk factors for LOAD, the most influential 

factor, for which the odds ratio is above 10 for homozygotes 

and found in about 40% of patients, is located on the APOE 

gene encoding apolipoprotein E (Corder et al., 1993).

 ApoE is an apolipoprotein that plays a major role in cho-

lesterol transport. In the brain, ApoE was previously believed 

to be mainly produced by astrocytes (Zhang et al., 2014; 

2016). However, recent transcriptome analysis from human 

brain samples and hiPSC-derived brain cell types showed 

considerable expression of ApoE transcripts in microglia as 

well, and its expression is upregulated even in neurons in AD 

brains (Keren-Shaul et al., 2017; Lin et al., 2018; Mathys et 

al., 2019; Xu et al., 2006). There are three isoforms of ApoE; 

ApoE2, ApoE3, and ApoE4; only one or two amino acid 

variations differentiate these isoforms. ApoE3, the most com-

mon isoform present in about 78% of the population, has 

cysteine and arginine residues Cys112 and Arg158, whereas 

ApoE2 contains cysteine residues Cys112 and Cys158, and 

ApoE4 carries two arginine residues, Arg112 and Arg158. 

Although the difference is very subtle, it results in drastically 

differential effects on the risk for AD development. The allele 

frequency of ApoE2 is about 8%, and it is known to be neu-

roprotective. However, ApoE4 is one of the strongest risk fac-

tors for AD with a prevalence of about 14% (Liu et al., 2013; 

Strittmatter et al., 1993). Since its strong association with AD 

was first reported about twenty-five years ago (Corder et al., 

1993; Strittmatter et al., 1993), many studies have been ded-

icated to determining how only one amino acid alteration in 

ApoE4 compared to ApoE3 could drastically increase the risk 

of AD (Liu et al., 2013).

 In terms of the role of ApoE protein on Aβ metabolism, 

contradictory data have been reported in different studies. 

Some studies have reported a decrease in Aβ plaque in fa-

milial AD (fAD) mouse models with ApoE deficiency, while 

others showed that ApoE is required for Aβ reduction, includ-

ing astrocyte-mediated Aβ clearance, and deletion of ApoE 

accelerated the accumulation of fibrillar amyloid in the brains 

of fAD mice (Bales et al., 1997; Holtzman et al., 1999; 2000; 

Kim et al., 2011; Koistinaho et al., 2004; Tai et al., 2011; 

Ulrich et al., 2018). Regarding the role of ApoE isoforms in 

AD pathogenesis, most studies agree that ApoE4 induces the 

highest Aβ accumulation and gliosis compared with other 

isoforms (Lin et al., 2018; Liu et al., 2013; 2017). Hyperphos-

phorylation of tau and related pathology (tauopathy), anoth-

er hallmark of AD, has also been observed to be accelerated 

in the presence of the ApoE4 isoform (Shi et al., 2017). How-

ever, the mechanisms of ApoE4-induced AD pathogenesis 

still remain unclear.

 Recent evidence has emerged showing abnormal choles-

terol metabolism by ApoE4 could mediate AD-associated 

pathology. Here, we review recent research, providing some 

insights on how ApoE4-mediated cholesterol dysregulation 

could affect functions of different brain cell types in the con-

text of AD.

NEURONS

Neurons are the most vulnerable to the toxicity of Aβ accu-

mulation, and they are also the major cell type responsible 

for generating Aβ in the brain (Sinha and Lieberburg, 1999; 

Zhang et al., 2016). Various pathological features are induced 

by Aβ accumulation in neurons, such as synaptic degradation, 

altered synaptic and neuronal circuit activity, and cell death, 

which have been extensively reviewed elsewhere (Canter et 

al., 2016; De Strooper and Karran, 2016; Palop and Mucke, 

2010; Selkoe and Hardy, 2016). In this review, we focus on 

how ApoE4-induced cholesterol metabolic abnormalities 

could affect Aβ generation and alter the synaptic function in 

neurons.

 Neuronal lipid rafts provide the platform for APP to en-

counter its cleaving enzymes, resulting in Aβ generation. 

Cholesterol is one of the major components of lipid rafts, 

and its dysregulation affects Aβ production in neurons (Fass-

bender et al., 2001; Simons et al., 1998). Tethering of cho-

lesterol to methyl-β-cyclodextrin (MβCD) enables its delivery 

to the plasma membrane, and neurons treated with MβCD-

cholesterol complex show increased lipid raft formation and 

generation of Aβ (Cossec et al., 2010; Marquer et al., 2014). 

However, it remains unknown whether cholesterol-depen-

dent facilitation of Aβ cleavage is through the regulation 

of β-secretase activity or/and increased formation of APP/

β-secretase clusters (Kalvodova et al., 2005; Marquer et al., 

2011). Some genetic variants associated with the LOAD are 

found on or near genes related to cholesterol transport such 

as APOE and ATP-binding cassette transporter 7 (ABCA7), 

which implies that Aβ generation could be altered by these 

variants through cholesterol dysregulation and altered lipid 

raft formation (Karch and Goate, 2015).

 In the brain, cholesterol is mainly transmitted from astro-

cytes to neurons via lipoprotein particles, of which ApoE is 

one of the major components (Liu et al., 2013; Vance, 2012). 

ApoE, mainly produced by astrocytes, forms the lipoprotein 

complex with cholesterol and is secreted through the func-

tion of ABCAs. Among isoforms, ApoE4 displays lower trans-

port affinity and binding capacity for lipids (Hatters et al., 

2006; Vance, 2012), which could reduce cholesterol trans-

port from astrocytes to neurons. As a result, the formation of 

neuronal lipid rafts and Aβ production might be affected by 

ApoE4 in the brain. Two recent studies with astrocytes gen-

erated from hiPSCs addressed this point, and both showed 

higher accumulation of cholesterol in ApoE4-expressing 

astrocytes than in isogenic ApoE3 astrocytes (Lin et al., 

2018; TCW et al., 2019). However, regarding the secretion 

of cholesterol from these ApoE4 astrocytes, Lin et al. (2018) 

showed increased extracellular cholesterol levels by directly 

measuring secreted cholesterol in cultured media, while TCW 

et al. (2019) speculated that ApoE4 astrocytes might secrete 

less cholesterol due to a reduction of ApoE and Abca1, which 

mediate the efflux of cholesterol. Further studies are required 
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to directly examine cholesterol transport to neurons from as-

trocytes with different ApoE isoforms.

 Although cholesterol synthesis in neurons is lower than in 

astrocytes, particularly in adults (Nieweg et al., 2009; Pfrieger 

and Ungerer, 2011), ApoE isoform-dependent changes in 

cholesterol metabolism in neurons could also be driven in a 

cell-autonomous manner. For example, impaired efflux of 

cholesterol in ApoE4 neurons could contribute to its intra-

cellular accumulation, leading to AD-related pathology, as 

observed in mice with cholesterol 24-hydroxylase-dependent 

cholesterol efflux suppressed in hippocampal neurons (Djelti 

et al., 2015). It is also important to investigate whether 

ApoE4 neurons have altered the expression and/or function 

of ApoE receptors such as those belonging to the low-density 

lipoprotein receptor family that can directly affect the uptake 

of extracellular cholesterol as well as Aβ clearance (Holtzman 

et al., 2012).

 Cholesterol plays critical roles in synaptic function. It helps 

maintain adequate curvature of membrane to facilitate sol-

uble NSF attachment protein receptor (SNARE)-mediated 

membrane fusion. Depleting cholesterol significantly reduces 

synaptic transmission, which can be reversed by reloading 

cholesterol (Linetti et al., 2010; Tong et al., 2009). Lack of 

cholesterol in neurons leads to impaired synaptic plasticity, 

evidenced by changes in paired-pulse facilitation and long-

term potentiation (Koudinov and Koudinova, 2002). Hippo-

campal synapses in mice with decreased astrocytic cholesterol 

secretion also showed fewer synaptic vesicles, more imma-

ture synapses, and reduced expression of presynaptic syn-

aptosomal nerve-associated protein 25 (SNAP-25) required 

for the exocytic release of neurotransmitters (van Deijk et al., 

2017).

 The role of ApoE isoforms on the formation of neuronal 

synapses and their function is not yet clear (Kim et al., 2014). 

A recent study with ApoE2, ApoE3 and ApoE4 knock-in (KI) 

mice in which the murine APOE gene was replaced with the 

human APOE2, APOE3 or APOE4 gene showed that ApoE4 

KI mice displayed reduced phagocytic capacity in astrocytes 

and increased senescence synapses compared to mice car-

rying other ApoE isoforms (Chung et al., 2016). This result 

seems to be consistent with a study that demonstrated an 

increased number of synapses in hiPSC-derived neurons car-

rying APOE4 alleles compared to ApoE3 neurons (Lin et al., 

2018). Nonetheless, further studies are necessary to under-

stand the role of ApoE4-dependent cholesterol dysregulation 

in synaptic dysfunction and whether restoration of cholester-

ol metabolism in ApoE4 brain would be sufficient to recover 

from synaptopathy.

ASTROCYTES

Lipoprotein-bound cholesterol from circulating plasma is 

prevented from entering the brain due to the presence of the 

blood-brain barrier (BBB), and astrocytes, which account for 

up to 40% of all brain cells in humans, are mainly respon-

sible for producing cholesterol in the brain (Nieweg et al., 

2009; Zhang et al., 2016). Cholesterol synthesis in astrocytes 

is tightly regulated by an internal feedback loop; if the intra-

cellular level of cholesterol is low, cholesterol synthesis is in-

duced by increasing proteolytic processes of sterol regulatory 

element-binding proteins (SREBPs) and reducing levels of 

proteins that mediate cholesterol efflux (Benarroch, 2008). 

When the intracellular cholesterol level is high, liver X recep-

tor/retinoid X receptor (LXR/RXR)-mediated transcription for 

cholesterol transport proteins is increased, and efflux of lipo-

protein complex is facilitated (Fig. 1). Cholesterol accumula-

tion in ApoE4 astrocytes may not be due, solely, to impaired 

efflux resulting from reduced ApoE levels. Transcriptome 

analysis in hiPSC-derived astrocytes suggests the expression 

of genes involved in lipid metabolism is dysregulated in 

ApoE4 astrocytes, with an increase in the expression levels of 

cholesterol biosynthesis-related genes. Lysosomal cholesterol 

degradation processes also seem to be impaired in these cells 

(Lin et al., 2018; TCW et al., 2019). Further study is required 

to precisely elucidate the mechanisms underlying ApoE4-in-

duced cholesterol accumulation in astrocytes, and how it can 

be targeted to resolve the abnormality.

 Because cholesterol is a multifunctional metabolite, abnor-

mal cholesterol metabolism by ApoE4 would lead not only 

altered cholesterol transport to other cell types but also func-

tional deficits in astrocytes as observed in neurons (Fukui et 

al., 2015; Martín-Segura et al., 2019) and microglia (Church-

ward and Todd, 2014; Račková, 2013). However, there have 

not been many studies investigating the effects of intracellu-

lar cholesterol on cellular functions or formation of organelles 

in astrocytes. Therefore, investigating whether/how ApoE4 

induces cholesterol-related cellular alterations in astrocytes 

are a priority. Cholesterol levels in astrocytes and glucose 

metabolism are closely linked (Ferris et al., 2017), A recent 

Fig. 1. Cholesterol homeostasis in astrocytes. Intracellular 

cholesterol level is tightly regulated and maintained in astrocytes, 

major producers of cholesterol in the brain. When cholesterol 

level is low, SREBP-mediated cholesterol synthesis is triggered. If 

the level of cholesterol is increased, SREBP is suppressed and LXR/

RXR-induced transcription for cholesterol transport proteins such 

as ApoE and Abca1 is facilitated. Cholesterol is also synthesized 

from glucose-derived Acetyl CoA, and the level of cholesterol can 

affect glucose metabolism.
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study showed ApoE isoform-dependent changes of brain 

glucose metabolism in mice (Wu et al., 2018), and it suggests 

that cholesterol abnormalities caused by ApoE4 could alter 

glucose metabolism (Fig. 1). Since astrocytes provide not only 

structural but metabolic supports for neurons, further inves-

tigations of astrocyte-specific changes in glucose metabolism 

in humanized ApoE KI mouse models or single-cell type cul-

ture systems with different ApoE isoforms, and its association 

with cholesterol dysregulation are needed.

MICROGLIA

The role of microglia in AD has been extensively investigated; 

nonetheless, their precise contribution to the development of 

AD pathology remains unclear. A recent development in sin-

gle-cell transcriptome analysis technology revealed the spec-

trum of microglia phenotypes during AD pathogenesis and 

the species difference in transcriptomic information of dis-

ease-associated microglia between mice and humans (Keren-

Shaul et al., 2017; Mathys et al., 2017; 2019). Although this 

topic is of great interest, it is beyond the scope of this review. 

Nevertheless, it is important to note that in both mouse and 

human cells, ApoE, along with triggering receptor expressed 

on myeloid cells 2 (TREM2), is shown to be upregulated and 

mediates microglial phenotypic changes and recruitment to 

amyloid plaques during the progression of AD (Cheng-Ha-

thaway et al., 2018; Keren-Shaul et al., 2017; Parhizkar et al., 

2019; Ulrich et al., 2018). Transition of microglia from resting 

(homeostatic) to reactive (disease-associated) phenotypes is 

generally mediated by transcriptional regulation (Deczkowska 

et al., 2018; Holtman et al., 2017; Krasemann et al., 2017). 

Although ApoE isoform-dependent transcriptional regulation 

was recently suggested by multiple studies (Huang et al., 

2017; Lin et al., 2018; TCW et al., 2019), its precise mecha-

nism is unclear.

 Because excessive inflammatory response is associated 

with AD, the relationship between the level of cholester-

ol and immune responses in microglia, the brain resident 

macrophages, is of great interest. Interaction of cholesterol 

and inflammatory response in macrophages was suggested 

(Ricote et al., 2004). In microglia, however, regulation of 

inflammatory responses by peroxisome proliferator-activated 

receptor γ (PPARγ), LXR/RXR-mediated cholesterol synthesis, 

and phagocytic activity by PPARγ and LXR/RXR were reported 

in separate studies (Bernardo and Minghetti, 2006; Courtney 

and Landreth, 2016; Saijo et al., 2013; Savage et al., 2015). 

Direct interaction between cholesterol and inflammatory re-

sponses in this cell type has not been assessed.

 The effect of microglial cholesterol on AD pathogenesis 

has been previously investigated using primary cultured cells. 

In primary microglia, accumulation of intracellular cholesterol 

induced by either MβCD-mediated loading or Niemann–Pick 

disease, type C1 (NPC1) inhibition (thus blocking cholesterol 

export from the lysosome) also increases intracellular Aβ. 

Furthermore, a negative correlation between cholesterol ac-

cumulation-induced intracellular Aβ and ApoE levels in these 

cells was observed. These data suggest that ApoE contributes 

to intracellular Aβ clearance through the regulation of choles-

terol levels in microglia (Lee et al., 2012).

 Recently developed protocols to generate microglia-like 

cells from hiPSC have enabled researchers to investigate 

functions and underlying mechanisms of ApoE4 variants in 

human microglia (Abud et al., 2017; Muffat et al., 2016; 

Pandya et al., 2017). Microglia-like cells from hiPSC carrying 

the APOE4 allele have fewer processes compared to isogenic 

cells with the APOE3 allele, and live-imaging of Aβ-uptake 

assays and transcriptome analysis suggest impaired phago-

cytic activity as well as upregulation of immune responses in 

microglia by ApoE4 (Lin et al., 2018). Interestingly, a recent 

study showed that glycolysis in microglia is important for 

acute response against Aβ (Baik et al., 2019). The next sever-

al years will likely produce more exciting and important data 

elucidating the contribution of microglial cholesterol dysregu-

lation by ApoE4 to the pathogenesis of AD.

OLIGODENDROCYTES

Oligodendrocytes have a unique structure called myelin that 

ensheathes axons, facilitating conduction of action potentials 

and protecting neurons from other possible extracellular 

insults (Domingues et al., 2016). Lipids are the major com-

ponents of myelin membranes, consisting of at least 70% of 

their dry weight, whereas membranes in other cell types are 

generally composed of about 30% lipids and 70% proteins 

(Chrast et al., 2011; Ingólfsson et al., 2017). This suggests 

that altered lipid composition by abnormal metabolic process-

es would affect not only intracellular compartments generally 

seen in other cell types but also the formation and function 

of myelin, which is critical for neuronal function.

 Among lipid metabolites in myelin membranes, cholesterol 

has been shown to have a significant role in myelin forma-

tion. Inhibition of cholesterol-synthesizing ability in oligoden-

drocytes by deleting squalene synthases leads to a significant 

reduction of myelination in oligodendrocytes, inducing 

behavioral abnormalities such as ataxia and tremors in mice 

(Saher et al., 2005). Increased levels of gene expression as-

sociated with cholesterol biosynthesis were also observed in 

oligodendrocyte lineage cells during the remyelination phase 

following axonal damage (Voskuhl et al., 2019). These data 

demonstrate the major contribution of oligodendrocyte-de-

rived cholesterol for myelination in the brain. A recent study 

also reported the role of astrocytic cholesterol in the forma-

tion of myelin following axonal injury (Camargo et al., 2017). 

In this study, cell type-specific deletion of SREBP cleavage-ac-

tivating protein (SCAP), which mediates cholesterol synthesis, 

either in oligodendrocytes or astrocytes, showed only partial 

impairment of myelination in mice. When SCAP is ablated in 

both cell types, however, mice showed an almost complete 

absence of myelination in the brain. These results suggest 

that altered levels of extracellular and intracellular cholesterol 

for oligodendrocytes could regulate myelination in the brain.

 As a major cholesterol transporter, it would not be surpris-

ing that ApoE is involved in myelination processes. Indeed, 

a recent study showed that ApoE is required for cholesterol 

clearance in demyelinating lesions to prevent lysosomal ac-

cumulation of myelin debris (Cantuti-Castelvetri et al., 2018). 

Studies have found an association between amyloid patholo-

gy with myelin alteration in AD animal models and preclinical 
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studies, including a reduction of myelination associated with 

brain atrophy (Dean et al., 2017; Wu et al., 2017). Further 

work is needed to determine the differential role of ApoE iso-

forms in oligodendrocytes and whether and how ApoE4-as-

sociated cholesterol dysregulation in these cells drive AD-as-

sociated pathology.

CONCLUSION

Investigating pathological features of whole AD brain sam-

ples would be of interest. However, it is also necessary to 

tease out cell type-specific alterations and their contributions 

to AD pathogenesis. Recent investigations of cell type-spe-

cific functions of ApoE4 from various brain cell types isolated 

from ApoE KI mice or derived from hiPSC showed impaired 

cholesterol metabolism by ApoE4, specifically in glial cells that 

were not evident from previous studies that relied on bulk 

brain samples composed of mixed cell populations (Lin et al., 

2018; Nuriel et al., 2017; TCW et al., 2019). As we reviewed, 

cholesterol metabolism is closely linked to various functions 

in different types of cells in the brain, and its dysregulation 

can lead to AD-associated pathological phenotypes in each 

cell type, including Aβ upregulation in neurons, abnormal 

glucose metabolism in astrocytes, inflammatory responses in 

microglia, and myelination defects in oligodendrocytes (Fig. 

2).

 In addition to these cell types, the BBB, which is composed 

of various cell types, including pericytes and endothelial cells, 

was also shown to be influenced by ApoE4. Multiple studies 

suggest that ApoE4 leads to BBB leakage through the degen-

eration of pericytes and the disruption of the integrity of tight 

junctions (Casey et al., 2015; Nishitsuji et al., 2011), which 

leads to the accumulation of serum proteins in the brain 

(Bell et al., 2012). This can result in further elevation of brain 

cholesterol. It is also possible that increased cholesterol in the 

brain or plasma by ApoE4 affects BBB integrity and may lead 

to leakage (Jiang et al., 2012; Kalayci et al., 2009). While 

there is a close coupling between neurovascular dysfunction 

and AD, the cell types mentioned above are understudied 

in the context of AD. Exploring detailed mechanisms in BBB 

pathogenesis in ApoE4 brain may provide insights into a new 

therapeutic avenue.

 While we largely discuss ApoE4 as an AD risk factor in 

terms of cholesterol metabolism in the brain, it is also import-

ant to mention that in several studies it has been suggested 

that plasma cholesterol level and AD risk/pathology are 

linked (Pappolla et al., 2003; Wingo et al., 2019). Epidemi-

ological studies show an increased concentration of plasma 

cholesterol in AD patients (Wood et al., 2014), and diet-in-

duced hypercholesterolemia in AD mouse models leads to 

increased Aβ and impaired memory (Park et al., 2013). Unlike 

physiological conditions in which the translocation of periph-

eral cholesterol to the brain is limited, it is facilitated when 

leakage of the BBB occurs under pathological conditions. 

Although more studies are necessary to identify plasma cho-

lesterol as a causative factor, it is important to understand the 

dynamic relationship between brain cholesterol and plasma 

cholesterol in terms of AD pathogenesis.

 Further studies are also required to determine whether 

other AD genetic risk factors associated with cholesterol ho-

meostasis, including Clustrin (apolipoprotein J) and ABCA7, 

share pathological mechanisms with APOE4. In this regard, 

brain cholesterol may be targeted for therapeutic treatments 

in LOAD. Statins are β-hydroxy β-methylglutaryl-CoA (HMG-

CoA) reductase inhibitors reducing the levels of cholesterol 

by blocking mevalonate synthesis. Statins including simvasta-

tin which across the BBB have been tested in multiple studies 

and have demonstrated beneficial effects in various AD mod-

el systems (Chu et al., 2018; Li et al., 2018). However incon-

sistent data regarding the effect of statins in clinical trials exist 

(Di Paolo and Kim, 2011; Wood et al., 2014). Further clinical 

investigation with larger cohorts would provide more defin-

Fig. 2. Potential pathological role of cholesterol dysregulation by ApoE4 in different brain cell types. Cholesterol dysregulation by 

ApoE4 could lead to cell type-specific functional abnormalities in the brain such as Aβ upregulation and impaired synaptic function 

in neurons, reduced synapse prunning activity in astrocytes, impaired remyelination in oligodendrocytes, and Aβ accumulation and 

inflammatory response in microglia.
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itive insights into the effects of statins in AD. Alternatively, a 

cell type-specific approach or one that targets the signaling 

pathway that is affected by cholesterol dysregulation might 

be promising approaches for the development of novel ther-

apeutics for AD.
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