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IMPORTANCE Apolipoprotein E (APOE)*2 and APOE*4 are, respectively, the strongest
protective and risk-increasing, common genetic variants for late-onset Alzheimer disease
(AD), making APOE status highly relevant toward clinical trial design and AD research broadly.
The associations of APOE genotypes with AD are modulated by age, sex, race and ethnicity,
and ancestry, but these associations remain unclear, particularly among racial and ethnic
groups understudied in the AD and genetics research fields.

Supplemental content

OBJECTIVE To assess the stratified associations of APOE genotypes with AD risk across sex,
age, race and ethnicity, and global population ancestry.

DESIGN, SETTING, PARTICIPANTS This genetic association study included case-control,
family-based, population-based, and longitudinal AD-related cohorts that recruited referred
and volunteer participants. Data were analyzed between March 2022 and April 2023. Genetic
data were available from high-density, single-nucleotide variant microarrays, exome
microarrays, and whole-exome and whole-genome sequencing. Summary statistics were
ascertained from published AD genetic studies.

MAIN OUTCOMES AND MEASURES The main outcomes were risk for AD (odds ratios [ORs]) and
risk of conversion to AD (hazard ratios [HRs]), with 95% Cls. Risk for AD was evaluated
through case-control logistic regression analyses. Risk of conversion to AD was evaluated
through Cox proportional hazards regression survival analyses.

RESULTS Among 68 756 unique individuals, analyses included 21852 East Asian
(demographic data not available), 5738 Hispanic (68.2% female; mean [SD] age, 75.4 [8.8]
years), 7145 non-Hispanic Black (hereafter referred to as Black) (70.8% female; mean [SD]
age, 78.4 [8.2] years), and 34 021 non-Hispanic White (hereafter referred to as White) (59.3%
female; mean [SD] age, 77.0 [9.1] years) individuals. There was a general, stepwise pattern of
ORs for APOE*4 genotypes and AD risk across race and ethnicity groups. Odds ratios for
APOE*34 and AD risk attenuated following East Asian (OR, 4.54; 95% Cl, 3.99-5.17) White
(OR, 3.46; 95% Cl, 3.27-3.65), Black (OR, 2.18; 95% Cl, 1.90-2.49) and Hispanic (OR, 1.90;
95% Cl, 1.65-2.18) individuals. Similarly, ORs for APOE*22+23 and AD risk attenuated
following White (OR, 0.53, 95% Cl, 0.48-0.58), Black (OR, 0.69, 95% Cl, 0.57-0.84), and
Hispanic (OR, 0.89; 95% Cl, 0.72-1.10) individuals, with no association for Hispanic
individuals. Deviating from the global pattern of ORs, APOE*22+23 was not associated with
AD risk in East Asian individuals (OR, 0.97; 95% Cl, 0.77-1.23). Global population ancestry
could not explain why Hispanic individuals showed APOE associations with less pronounced
AD risk compared with Black and White individuals. Within Black individuals, decreased global
African ancestry or increased global European ancestry showed a pattern of APOE*4 dosage
associated with increasing AD risk, but no such pattern was apparent for APOE*2 dosage with
AD risk. The sex-by-age-specific interaction effect of APOE*34 among White individuals
(higher risk in women) was reproduced but shifted to ages 60 to 70 years (OR, 1.48; 95% Cl,
1.10-2.01) and was additionally replicated in a meta-analysis of Black individuals and Hispanic
individuals (OR, 1.72; 95% Cl, 1.01-2.94).

CONCLUSION AND RELEVANCE Through recent advances in AD-related genetic cohorts, this Author Affiliations: Author
study provided the largest-to-date overview of the association of APOE with AD risk across afﬁ“ftions arelisted at the end of this
article.

age, sex, race and ethnicity, and population ancestry. These novel insights are critical to guide
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polipoprotein E (APOE)*2 and APOE*4 are, respec-

tively, the strongest protective and risk-increasing,

common genetic variants for late-onset Alzheimer
disease (AD), making an individual’s APOE status highly rel-
evant toward clinical trial design and AD research broadly.!?
Importantly, associations of APOE genotypes with AD are
modulated by age, sex, race and ethnicity, and population an-
cestry, but these associations remain unclear, particularly in
racial and ethnic groups historically understudied in the AD
and genetics research fields.!>*® While the field has advanced
insights into this matter across the past decade, a 1997 land-
mark study by Farrer et al® published in JAMA remains a com-
mon reference given its comprehensive assessment of the
associations of APOE with AD risk across East Asian, His-
panic, non-Hispanic Black (hereafter referred to as Black), and
non-Hispanic White (hereafter referred to as White) individu-
als as well as having launched initial insights into the age-
specific sex dimorphism of the association of APOE*4 with AD
risk (which was later replicated for APOE*34 in a more nar-
row age window).>” The sample sizes for Black, East Asian, and
Hispanicindividuals in the Farrer et al® study were small, how-
ever, leaving many questions on the associations of APOE geno-
types with AD risk in these racial and ethnic groups.

In parallel, there has been substantial evolution and de-
bate regarding the appropriate use of race and ethnicity and
genetic ancestry in biomedical research and clinical practice.
Importantly, race and ethnicity are socially ascribed identi-
ties that capture risk related to epidemiologic factors and so-
cial determinants of health, while genetic ancestry relates to
geographical origins and inherent biologic variation.®° Ge-
netic population ancestry may be particularly relevant in iden-
tifying genetic variants with variable allele frequencies and ef-
fects across ancestry populations, which in turn could help
explain heterogeneity in the associations of APOE with AD
risk.!1°12 Importantly, while race and ethnicity correlate with
genetic ancestry (eg, a mixture of African, Amerindian, and Eu-
ropean among Hispanic individuals; more African ancestry
among Black individuals; and more European ancestry among
White individuals),'® they are less accurate identifiers of ge-
netic risk for disease.® As such, it is relevant to study the as-
sociation of APOE with ADrisk considering both race and eth-
nicity and population ancestry as well as whether and how they
interact to affect AD risk.

Through substantial advances in AD genetics, including the
addition of various novel cohorts and increased efforts from
the Alzheimer’s Disease Genetics Consortium and the Alzhei-
mer’s Disease Sequencing Project to increase sample diver-
sity, we now have access to publicly available data sets with
substantially larger sample sizes for Black, Hispanic, and White
individuals.!®>416 Furthermore, given that these samples un-
derwent array-based or sequencing-based genotyping, we can
also perform extensive genetic and phenotypic data harmo-
nization, evaluate effects of global population ancestry, and
apply state-of-the-art quality control for more robust APOE
genotyping.!”'° In parallel, other efforts in the field have led
to the construction of genetic cohorts among East Asian indi-
viduals, for which summary statistics are available.?° Consid-
ering these important advances, we sought to reassess, in the
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Key Points

Question How do associations of apolipoprotein E (APOE)
genotypes with late-onset Alzheimer disease (AD) risk differ
across age, sex, and population ancestry?

Findings In this genetic association study of 68 756 unique
individuals, there was a stepwise pattern of decreasing effect
estimates for APOE*4 following East Asian, non-Hispanic White,
non-Hispanic Black, and Hispanic individuals. There was a similar
stepwise pattern of increasing effect estimates for APOE*2
following non-Hispanic White, non-Hispanic Black, and Hispanic
individuals, with no association for APOE*2 in East Asian
individuals and Hispanic individuals.

Meaning This study found associations of APOE with AD risk
across important biologic and demographic strata, which may
guide AD clinical trial design and research.

largest such study to date, the association of APOE genotype
with AD risk across important demographic and biologic vari-
ables that are known to interact with APOE. We specifically
made use of racial and ethnic labels available in the consid-
ered genetic cohorts (following the National Institutes of Health
definitions) and considered stratifications consistent with the
1997 Farrer et al study.® We additionally evaluated the effects
of stratifying by global population ancestry proportions.

Methods

An in-depth overview of all methods is provided in the
eMethods in Supplement 1. The current genetic association
study followed the Strengthening the Reporting of Genetic As-
sociation Studies (STREGA) reporting guideline. Participants
or their caregivers provided written informed consent in the
original studies. The current study protocol was granted an
exemption by the Stanford University institutional review
board because the analyses were carried out on deidentified,
“off-the-shelf” data; therefore, additional informed consent
was not required.

Ascertainment of Genotype and Phenotype Data
Case-control, family-based, and longitudinal AD-related ge-
netic cohorts were available through public repositories, with
genetic data from high-density single-nucleotide variant mi-
croarrays, exome microarrays, whole-exome sequencing, and
whole-genome sequencing (eTables 1and 2 in Supplement 1).
Associations of APOE genotypes with AD risk among East Asian
individuals were obtained through meta-analysis of 2 prior
meta-analyses.>2°

Ascertainment of Race and Ethnicity Data

Race and ethnicity were self-reported by study participants for
which genetic data were directly available. Specifically, cat-
egories were defined by the National Institutes of Health. Race
categories included American Indian or Alaska Native, Asian,
Black or African American, Native Hawaiian or Other Pacific
Islander, and White. Ethnicity categories included Hispanic or
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Latino or not Hispanic or Latino. If individuals did not iden-
tify with these racial and ethnic categories, they could report
“other.” To increase sample size, for a subset of individuals,
race information was inferred through a combination of co-
hort descriptive information and global population ancestry
(eMethods in Supplement 1). Overall, the primary combined
racial and ethnic groups available in the genetic samples
were Black, Hispanic (including all race categories and other
race), and White groups. Results for East Asian individuals
were based on external data that included participants from
Japan and Korea.

Ancestry Determination, Quality Control,

and Sample Processing

The design of sample processing is shown in eFigure 1 in
Supplement 1. Genetic data underwent extensive quality con-
trol, imputation to the Trans-Omics for Precision Medicine
reference panel (array-based samples),?"22 and ancestry
determination (SNPweights, version 2.1 [Harvard T.H. Chan
School of Public Health]) (eFigure 2 in Supplement 1).2* Global
(ie, genome-wide) ancestry was determined with populations
from the 1000 Genomes Project Consortium as a reference.?*
By applying an ancestry percentage cutoff of 75% or greater,
samples were stratified into the 5 super populations: African,
Amerindian, East Asian, European, and South Asian. Partici-
pant relatedness was estimated from identity-by-descent
analysis. Duplicate individuals were identified, and their clini-
cal, diagnostic, and pathological data as well as age at onset of
cognitive symptoms, age at examination for clinical diagnosis,
age at last examination, age at death, sex, race, ethnicity, and
APOE genotype were cross-referenced across cohorts. Dupli-
cate entries with irreconcilable phenotypes were excluded.
APOE genotypes were adjudicated using state-of-the-art
APOE prioritization approaches, filtering out samples in
which APOE genotypes lacked robustness (prioritizing APOE
genotypes from sequencing data and cross-referencing APOE
genotypes from high-quality imputation with those provided
in study demographics through various protein-based and
DNA-based methods).'” Finally, samples were filtered to age
older than 55 years, cases or controls, belonging to 1 of 3 racial
and ethnic groups available (Black, Hispanic, or White), and
having no first-degree relatives included in any of the data
sets. Inclusion of related individuals for modeling with mixed
models was not pursued given that genetic relationship matri-
ces in the current pooled analysis design would have variable
accuracy due to various genetic sources. Final sample demo-
graphics and cohort or platform distributions are given in
eTables 3 to 5 in Supplement 1.

Statistical Analysis

In primary analyses, case-control logistic regressions (based
on status at last visit) evaluated the associations of AD risk with
APOE*2 dosage, APOE*4 dosage, or APOE genotype in each case
with APOE*33 as the reference. APOE*2 dosage effect esti-
mates were evaluated using the subset of APOE*2 allele
carriers and APOE*33 individuals while adjusting for APOE*4
dosage (the inverse holds for APOE*4 dosage effects). APOE
genotype effect estimates were evaluated 1 at a time, with
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subsetting of data to carriers of the APOE genotype of inter-
estand individuals with APOE*33. Models adjusted for sex, co-
hort and platform (eTable 4 in Supplement 1), and global Afri-
can, Amerindian, and European ancestry. These 3 primary
ancestry covariates were included as there was minor varia-
tion from East Asian and South Asian ancestries, and the use
of 3 compared with 2 ancestry covariates in the models did not
lead to any overfitting or differing effect estimates. Multiple
stratified designs were evaluated. APOE-by-sex associations
were estimated through formal interaction analyses. APOE-
by-race and ethnicity and APOE-by-ancestry associations were
estimated through heterogeneity tests. Secondary survival
analyses evaluated Cox proportional hazards regression for AD
age at onset. Significant discoveries were considered at 2-sided
P < .05. Age-stratified analyses used a sliding-window ap-
proach (10-year windows, 5-year overlap); thus, significant
age-stratified discoveries were considered after Bonferroni
correction for the number of nonoverlapping windows
(P < .05; 4 = 0.0125). If windows included less than 100 indi-
viduals, associations were not evaluated, and if 95% CIs were
excessively large, results were not visualized. If APOE-by-sex
associations in 1 race and ethnicity or population ancestry
group reached significance, we performed meta-analyses in
other relevant groups and considered replication at 2-sided
P < .05. Sensitivity analyses were conducted to evaluate the
association of population ancestry proportion within racial
and ethnic groups or regardless thereof, and to evaluate the
impact of pathology verification status, ascertainment design,
and excluding samples in which race status had to be inferred
rather than being directly provided through demographic
files. Data were analyzed between March 2022 and April
2023. All statistical analyses were conducted using R, version
4.2.1 (R Project for Statistical Computing).

. |
Results

Race and Ethnicity Analyses

Of 68 756 unique individuals available for association analy-
ses, 7145 were Black (70.8% female; mean [SD] age, 78.4 [8.2]
years); 21852, East Asian (demographic data not available);
5738, Hispanic (68.2% female; mean [SD] age, 75.4 [8.8] years);
and 34 021, White (59.3% female; mean [SD] age, 77.0 [9.1]
years) (eFigure 1 and eTable 3 in Supplement 1). Assessment
of APOE genotypes among East Asian individuals was limited
to results reported in prior studies.?-2° Results from all pri-
mary analyses across racial and ethnic groups are given in
Figure 1, Table, and eFigures 3 and 4 and eTable 6 in Supple-
ment 1. Considerable race and ethnicity differences were ob-
served across age and non-age-stratified analyses. There was
a general, stepwise pattern of ORs for APOE*4 genotypes and
AD risk across race and ethnicity groups. Odds ratios for
APOE*34 and AD risk attenuated following East Asian (OR,
4.54; 95% CI, 3.99-5.17), White (OR, 3.46; 95% CI, 3.27-3.65),
Black (OR, 2.18; 95% CI, 1.90-2.49), and Hispanic (OR, 1.90; 95%
CI, 1.65-2.18) individuals. Similarly, ORs for APOE*22+23 and
AD risk attenuated following White (OR, 0.53, 95% CI, 0.48-
0.58), Black (OR, 0.69, 95% CI, 0.57-0.84), and Hispanic (OR,
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Figure 1. Associations of Apolipoprotein E (APOE) Genotypes With Alzheimer Disease Risk Across Race and Ethnicity and Age
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A, Related summary statistics are given in eTable 6 in Supplement 1.
2p<.001

bp<.0l

°p=.05.

dp<.05.

€ P < .05 for Hispanic individuals vs non-Hispanic Black individuals after

Bonferroni correction of the amount of overlapping age windows.

f P <05 for Hispanic individuals vs non-Hispanic White individuals after
Bonferroni correction of the amount of overlapping age windows.

8 P < .05 for non-Hispanic Black individuals vs non-Hispanic White individuals
after Bonferroni correction of the amount of overlapping age windows.

0.89; 95% CI, 0.72-1.10) individuals, with no association for
Hispanicindividuals. Deviating from the global pattern of ORs,

jamaneurology.com

Downloaded from jamanetwork.com by Georges MOUTON on 01/30/2024

APOE*22+23 was not associated with AD risk in East Asian in-
dividuals (OR, 0.97; 95% CI, 0.77-1.23). Notably, the OR for
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APOE Genotype and Alzheimer Disease Risk by Age, Sex, and Ancestry

Figure 2. Associations of Apolipoprotein E (APOE)*34 Genotypes With Alzheimer Disease Risk Across Race and Ethnicity, Age, and Sex

@ APOE*34 in the non-Hispanic White group by sex
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A-C, The age bin of 60 to 70 years indicated a significant APOE*34-by-sex
association in non-Hispanic White individuals that was replicated with nominal
significance upon meta-analysis of Hispanic individuals and non-Hispanic Black
individuals (P = .048). D, Squares indicate odds ratios (ORs), with horizontal
lines indicating 95% Cls. The diamond indicates the pooled OR, with outer

points of the diamond indicating 95% Cls.
2 p = .01 for interaction.
bp = .08 for interaction.
€ P = .25 for interaction.

APOE*4 genotypes and dosage was lowest in Hispanic individu-
als compared with other race and ethnicity groups. Similarly,
there was no association of APOE*2 with AD risk in Hispanic in-
dividuals (Table). Sensitivity analyses indicated that this was not
due to APOE associations differing across Black or White race
(eTable 7 in the Supplement 1). More White individuals had pa-
thology-verified diagnoses, which may have caused biasin cross-
race and ethnicity comparisons (eTable 3in Supplement 1). Sen-
sitivity analyses using only clinically determined diagnoses or
adjusting for pathology verification status, however, suggested
that results were consistent (eTables 8 and 9 in Supplement 1).
Similarly, different cohort ascertainment design proportions
across racial and ethnic groups may bias results,® but related
sensitivity analyses showed consistent findings (eTables 10 and
11 in Supplement 1). It was notable that in non-community-
based samples across Black and White groups, there was simi-
lar AD risk associated with APOE*23 (slightly more protective
in White individuals), and in Black individuals, APOE*34 and
APOE*44 outcome estimates showed greater AD risk com-
pared with what was observed in primary analyses. Further-
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more, sensitivity analyses excluding samples in which race in-
formation had to be inferred showed no notable differences
compared with primary analyses except for potentially a
slightly lower AD risk associated with APOE*4 among White
individuals (eTable 12 in Supplement 1).

APOE-by-sex associations reached significance among
White individuals for APOE*44, showing lower AD risk among
women compared with men in non-age-stratified analyses
(Table), and for APOE*34 at ages 60 to 70 years, showing an
association with greater AD risk among women compared with
men (Figure 2 and eFigure 4 in Supplement 1). In a meta-
analysis of Black and Hispanic individuals, the APOE*44-by-
sex effect estimate was concordant in direction (lower risk
among women) but did not replicate and did not reveal an as-
sociation with AD risk (OR, 0.86; 95% CI, 0.55-1.35; P = .52),
while the APOE*34-by-sex association at ages 60 to 70 years
was concordant in direction (greater risk among women) and
replicated (OR, 1.72; 95% CI, 1.01-2.94; P = .046). The latter as-
sociation remained consistent in sensitivity analyses (eFig-
ure 5 in Supplement 1).
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Findings from survival analyses across racial and ethnic
groups were similar to case-control regression analyses (eFig-
ure 6 and eTable 13 in Supplement 1) but indicated 2 notable
differences. First, the lower risk of AD associated with APOE*2
became more prominent among Hispanic individuals (but re-
mained higher than among Black individuals). Second, sig-
nificant differences for APOE*4, particularly APOE*44, across
Black and White individuals were lost. Survival analyses in-
dicated no difference in the association of APOE*44 with AD
risk across Black (hazard ratio [HR], 2.23; 95% CI, 2.07-2.40)
and White (HR, 2.32; 95% CI, 2.27-2.38) individuals. Notably,
asignificant APOE*34-by-sex interaction was observed among
White individuals (OR, 1.48; 95% CI, 1.10-2.01; P = 1.9 x 1073),
which replicated upon meta-analysis of Black and Hispanic in-
dividuals (OR, 1.72; 95% CI, 1.01-2.94; P = 2.3 x 107>) (eFig-
ure 6 in Supplement 1).

While among East Asian and Hispanic individuals there was
no significant association of APOE*22 and APOE*23 with AD
risk, there was a comparatively lower risk in these racial and
ethnic groups for APOE*24 compared with APOE*34 (Figure 1A,
Table, and eFigure 3 and eTable 6 in Supplement 1), suggest-
ing a protective association of APOE*2 with risk of AD when
seen together with APOE*4. Conversion risk analyses did
indicate a significant association of APOE*23 with reduced
AD risk among Hispanic individuals but further showed that
the HR of APOE*24 was reduced among Hispanic individuals
compared with Black individuals (which was not true in case-
control regression analyses; eTable 13 in Supplement 1) and
even displayed a protective HR. This again suggested a more
protective HR for APOE*2 and AD risk when seen together
with APOE*4.

Global Population Ancestry Analyses

Focusing on global population ancestry effects, proportions of
participants having at least 75% of a given population ancestry
within racial and ethnic groups (determined through cohort de-
mographics) were Black individuals with African (96.4%), Am-
erindian (0%), and European (0%) ancestry; Hispanic individu-
als with African (2.9%), Amerindian (10.8%), and European
(7.0%) ancestry; and White individuals with African (0%), Am-
erindian (0%), and European (99.5%) ancestry (eFigure 2 in
Supplement 1). Mean global population ancestries are shown in
eTable 3in Supplement 1. Global population ancestry could not
explain why Hispanic individuals showed APOE associations
with less pronounced AD risk compared with Black and White
individuals (eTable 14 in Supplement 1). While decreased Afri-
can or European ancestry or increased Amerindian ancestry
might have contributed to APOE associations with reduced AD
risk among Hispanic individuals, comparing less than 25% with
more than 25% Amerindian ancestry strata showed no differ-
ences in associations with APOE*2 and APOE*4 dosages. Within
Black individuals, decreased global African ancestry or in-
creased global European ancestry showed a pattern of APOE*4
dosage associated with increasing AD risk, but no such pattern
was apparent for APOE*2 dosage with AD risk (eTable 15 in
Supplement 1). Within White individuals, we judged that there
was insufficient ancestry variation to conduct ancestry-
stratified analyses (eFigure 2 in Supplement 1).
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Lastly, APOE associations with AD risk were evaluated
across global population ancestry groups without regard or ad-
justment for race and ethnicity status: African (n = 5461), Am-
erindian (n = 621), and European (n = 34 021) ancestry. Case-
control regression results are shown in eTable 16 in
Supplement 1 and confirmed that differences across African
and European ancestry were similar to those across Black and
White individuals, although among individuals with African
ancestry, the AD risk associated with APOE*4 was slightly di-
minished compared with that among Black individuals and
there was no association of APOE*22 with AD risk.

|
Discussion

Motivated by recent advances in AD-related genetic cohorts
as well as state-of-the-art genotype and phenotype quality
control, we provided, to our knowledge, the largest-to-date
overview of the associations of APOE with AD risk across age,
sex, race and ethnicity, and global population ancestry. Im-
portantly, we also performed interaction and heterogeneity
analyses to robustly evaluate stratified associations. Com-
pared with prior work, we expanded sample sizes for all ra-
cial and ethnic groups, most notably for Black, East Asian, and
Hispanic individuals, leading to important, novel insights.

Interestingly, the effect estimates for APOE genotypes and
AD risk were least pronounced among Hispanic individuals,
which was not explained by Black and White race or global an-
cestry differences. This observation of attenuated effect esti-
mates for APOE and AD risk among Hispanic individuals were
observed in a prior, smaller study (using overlapping samples)
conducted by Blue et al in 2019.%° Although global ancestry did
not show a consistent effect on modulating the ORs for APOE
with ADrisk in Hispanic individuals, there were suggestive ef-
fects whereby Amerindian and European ancestry modu-
lated the ORs for APOE*44 with AD risk (eTable 14 in Supple-
ment 1). Notably, an attenuated OR for APOE*44 with AD risk
was observed with high Amerindian ancestry, which appears
in line with a previously reported lack of APOE*4 associa-
tions with neurodegeneration among American Indian
individuals.?® Furthermore, our findings indicated that dif-
ferences in ORs for APOE*4 and AD risk were more pro-
nounced when comparing African with European ancestry than
when comparing Black with White individuals. Similarly,
among Black individuals, higher African (or lower European)
ancestry showed a pattern of reduced ORs (less risk increas-
ing) for APOE*4 and AD risk. While the reduced effect of
APOE*4 among Black individuals is an important, ongoing re-
search question in the field, our observations suggest that re-
search should focus additionally on African ancestry-specific
investigations and on the further diminished APOE effect es-
timates among Hispanic individuals.

Given the relative paucity of APOE*2 carriers in prior stud-
ies of Black and Hispanic individuals, a robust assessment of
the association of APOE*2 with AD risk among these groups
remained hampered.!> We observed that APOE*2, in addi-
tion to APOE*4, showed a stepwise pattern of attenuated ORs
following White, Black, and Hispanic individuals; there was
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no association of APOE*2 with AD risk among East Asian and
Hispanic individuals. Despite that the APOE*2 allele fre-
quency among East Asian individuals reported by Choi et al?°
was less than half of that among White individuals, the total
sample size of East Asian individuals in our meta-analyses
should have been sufficiently large to observe a potential pro-
tective association. Global population ancestry did not ex-
plain attenuated (less protective) ORs for APOE*2 and AD risk
among Black and Hispanic individuals compared with White
individuals except for a lack of an association for APOE*22 at
high global African ancestry (but not APOE*23). Overall, the
findings suggest the need for more research to understand why
the ORs for APOE*2 and AD risk were attenuated (less protec-
tive) among Black, East Asian, and Hispanicindividuals, as well
as with increased global African ancestry. It was additionally
notable that among East Asian and Hispanic individuals, a pro-
tective association of APOE*2 was apparent when seen to-
gether with APOE*4. A similar observation was made re-
cently for a sample of African American individuals in the
National Alzheimer’s Coordinating Center.?” A biologic mecha-
nism explaining this observation is, to our knowledge, not ap-
parent, compelling further research into the already under-
studied APOE*24 genotype.

It should be noted that compared with Black and White
individuals, Hispanic controls were a mean 5 years younger
(eTable 3 in Supplement 1), which may have contributed to
some diminishment of the ORs for APOE and AD risk. How-
ever, age-stratified analyses and survival analyses still re-
vealed the most attenuated effect estimates for APOE geno-
types and AD risk among Hispanic individuals. Another
interesting finding was that secondary survival analyses sug-
gested aloss of significant differences between Black and White
individuals for AD conversion risk associated with APOE*4, par-
ticularly APOE*44. Similarly, case-control sensitivity analy-
ses indicated that in non-community-based samples, among
Black individuals, the associations of APOE*23 became more
protective and those of APOE*34 and APOE*44 more risk in-
creasing, such that the effect estimates became more similar
to those for White individuals. These findings suggest that
future studies should explore age-at-onset effects and the
role of ascertainment design among racial and ethnic minor-
ity groups. It is also relevant to note that the effect estimates
for APOE*2 and AD risk became more protective among
Hispanic individuals when using survival analyses. Unfortu-
nately, survival estimates could not be obtained for East
Asian individuals, but it will be interesting to evaluate this in
future studies.

Despite the novel 2023 National Academies of Sciences,
Engineering, and Medicine guidelines on using population de-
scriptors in genetics,?® it is relevant to note that we focused
on the current racial and ethnic groups given their wide-
spread use in AD (including genomics, clinical trials, and broad
AD research) and previously established effects on stratify-
ing APOE-related risk for AD.? The choice was additionally mo-
tivated given that more granular information regarding popu-
lation or environmental variables was not readily available
across the various included cohorts. Although we showed that
racial and ethnic groups were associated with ancestry groups
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(in line with expectations), our findings supported the notion
that race and ethnicity descriptors should not be used as a proxy
for genetic or biologic variation, most notably shown by the
pattern of diminished effect estimates for APOE*4 in African
ancestry compared with Black individuals. On the other hand,
we showed that the racial and ethnic groups were relevant in
revealing health disparities for the effects of APOE*2 and for
Hispanic individuals since global population ancestry could not
explain the observed differences in the APOE genotype asso-
ciations with AD risk.

Lastly, the sex-by-age-specific association of APOE*34 with
ADrisk among White individuals (higher risk among women) was
reproduced but shifted to ages 60 to 70 years (compared with
ages 65-75 years in the previous largest analysis [N = 19 764], to
our knowledge).” The earlier shift in age may be explained by our
harmonization of phenotype data (including age at onset). Ex-
panding on these prior insights, we also replicated this associa-
tion among Black and Hispanic individuals. Similarly, in sur-
vival analyses among White individuals, we reproduced the
sex-by-APOE*34 interaction (greater risk among women) pre-
viously reported by Altmann et al* in 2014 (N = 5496) and ad-
ditionally replicated this among Black and Hispanic individu-
als. The interaction in the Altmann et al* study appeared larger
than in our study, which may be because they evaluated con-
version from control status using longitudinal data, which in
turn may have provided more accurate effect estimates. Over-
all, it was compelling that we observed consistency for the sex-
by-APOE*34 association across multiple racial and ethnic
groups, emphasizing that future studies and clinical trials with
racial and ethnic minority populations should consider sex-
by-APOE*4 interactions.

Future Perspectives

The current study only considered global population ances-
try, but prior work has suggested that local ancestry on APOE
may be relevant to explain heterogeneity of APOE associa-
tions with AD risk.?>2°3! Local ancestry analyses can provide
insight into the ancestral origin of the genetic information sur-
rounding APOE, which may differ from the global average an-
cestry assessed across an individual’s entire genome. It is par-
ticularly interesting that ancestry-specific haplotypes on APOE
may carry ancestry-specific variants that specifically modu-
late the association of APOE*2 or APOE*4 genotypes with AD
risk. An example is provided by Griswold et al*2 in 2021, sug-
gesting that African compared with European ancestry hap-
lotypes on APOE*4 reduced expression of APOE*4, which in
turn may explain attenuated effect sizes for APOE*44 and AD
risk in individuals of African ancestry compared with those of
European ancestry. Our findings are thus important to guide
future studies assessing APOE local ancestry across racial and
ethnic groups. It will be particularly interesting to see whether
local Amerindian ancestry may play a role in the diminished
ORs for APOE among Hispanic individuals, although 2 prior,
smaller studies may suggest the opposite.?>*3 Despite the large
increase in samples for racial and ethnic minority groups, ad-
ditional data will be needed to further increase robustness, par-
ticularly for APOE*2 effects and APOE-by-sex associations and
toadd more Asian samples that are expected to become avail-
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able through publicly available resources from the Alzhei-
mer’s Disease Genetics Consortium and the Alzheimer’s Dis-
ease Sequencing Project. For the current East Asian samples,
it is also relevant to note that these were based on Japanese
and Korean samples, whereas effect estimates in Chinese,>*
Indian,*> and Iranian® populations may differ (Miyashita et al>”
provides arelevant review). Similarly, it is relevant that more
than half of the Hispanic individuals in this study were Carib-
bean Hispanicindividuals (eTable 5in Supplement 1), such that
larger and more diverse groups of Hispanic individuals will
need to be included in future work to obtain more represen-
tative results. Some gains in sample sizes may also be achieved
by using mixed model approaches that integrate genetic rela-
tionship matrices to include related individuals.

Limitations

The current study largely made use of cross-sectional data,
which have obvious advantages in terms of power, but the ad-
dition of more longitudinal cognitive data should help pro-
vide more accurate effect estimates of the association of APOE
genotypes with AD risk and allow modeling of effects on mild
cognitive impairment. Along this line, it is also relevant that
effect estimates obtained in this study were approximate and
dependent on recruitment criteria in the AD case-control co-
horts that were aggregated, whereas population-based stud-
ies may provide effect estimates more representative of the
general population (eTable 11 in Supplement 1). It would fur-
ther be relevant that future studies consider investigating dif-
ferences in the rate of cognitive decline after symptom onset
across racial and ethnic groups, as recent data mainly from
White cohorts suggest neuropathology-independent, APOE-
driven differences in rate of progression.®®*° Furthermore, the

Original Investigation Research

current study was unable to examine whether the attenuated
ADrisk associated with APOE in Black and Hispanic individu-
als was attributable to social determinants of health or clini-
cal or modifiable risk factors moderating the association with
APOE. Considering these limitations, novel data from ongo-
ing diversity and phenotype harmonization efforts in AD
genetics!41649 should enable future extensions on this study
that will generate additional, valuable insights.

. |
Conclusions

We provided, to our knowledge, the largest-to-date overview
of the associations of APOE with AD risk across age, sex, race
and ethnicity, and global population ancestry. Our most no-
table observations were the following. First, ORs for APOE
genotypes and AD risk were least pronounced among His-
panicindividuals, which was not explained by global popula-
tion ancestry. Second, there was a stepwise pattern of increas-
ing ORs for APOE*2 (combination of APOE*22 and APOE*23)
and AD risk following White, Black, and Hispanic individu-
als, with no association in East Asian and Hispanic individu-
als. Third, the sex-by-age-specific association of APOE*34 with
AD risk among White individuals (greater risk among wom-
en) was reproduced but shifted to ages 60 to 70 years and was
additionally replicated among Black and Hispanic individu-
als. Fourth, survival analyses indicated no difference in AD risk
associated with APOE*44 across Black and White individu-
als, suggesting that future studies should evaluate age-at-
onset effects among racial and ethnic minority populations.
Overall, these novel insights should help guide AD research and
clinical trial design.
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