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Abstract

Objective: The type 2 deiodinase (D2) is a key enzyme for intracellular triiodothyronine (T3) generation.
A single-nucleotide polymorphism in D2 (Thr92Ala) has been associated with increased insulin
resistance in nondiabetic and type 2 diabetes (DM2) subjects. Our aim was to evaluate whether the D2
Thr92Ala polymorphism is associated with increased risk for DM2.
Design and methods: A case–control study with 1057 DM2 and 516 nondiabetic subjects was
performed. All participants underwent genotyping of the D2 Thr92Ala polymorphism. Additionally,
systematic review and meta-analysis of the literature for genetic association studies of D2 Thr92Ala
polymorphism and DM2 were performed in Medline, Embase, LiLacs, and SciELO, and major meeting
databases using the terms ‘rs225014’ odds ratio (OR) ‘thr92ala’ OR ‘T92A’ OR ‘dio2 a/g’.
Results: In the case–control study, the frequencies of D2 Ala92Ala homozygous were 16.4% (nZ173)
versus 12.0% (nZ62) in DM2 versus controls respectively resulting in an adjusted OR of 1.41 (95%
confidence intervals (CI) 1.03–1.94, PZ0.03). The literature search identified three studies that
analyzed the association of the D2 Thr92Ala polymorphism with DM2, with the following effect
estimates: Mentuccia (OR 1.40 (95% CI 0.78–2.51)), Grarup (OR 1.09 (95% CI 0.92–1.29)), and Maia
(OR 1.22 (95% CI 0.78–1.92)). The pooled effect of the four studies resulted in an OR 1.18 (95% CI
1.03–1.36, PZ0.02).
Conclusions: Our results indicate that in a case–control study, the homozygosity for D2 Thr92Ala
polymorphism is associated with increased risk for DM2. These results were confirmed by a meta-
analysis including 11 033 individuals, and support a role for intracellular T3 concentration in skeletal
muscle on DM2 pathogenesis.
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Introduction

Thyroxine (T4), a major secretory product of the thyroid
gland, needs to be converted to triiodothyronine (T3) to
exert its biological activity. Type 2 deiodinase (D2)
catalyzes T4 to T3 conversion, and plays a critical role in
maintaining intracellular T3 levels in specialized tissues,
such as the anterior pituitary, CN, and brown adipose
tissue (BAT) (1). D2 gene (DIO2) expression has also
been reported in pituitary, thyroid, placenta, heart and
skeletal muscle, and testis (2–8). Recently, it has
been suggested that D2 also contributes for a fraction
of the serum T3 levels in euthyroid and hypothyroid
individuals (9).

Previous studies have demonstrated that polymorph-
isms in the deiodinase genes might interfere in the
phenotypic expression of these enzymes (6, 10).
Interestingly, a study described a single-nucleotide
polymorphism in D2, in which a threonine (Thr)
changes to alanine (Ala) at codon 92 (D2 Thr92Ala)
was associated with w20% lower glucose disposal rate
ndocrinology
in nondiabetic subjects (11). In addition, the Ala allele
in homozygosis was associated with greater insulin
resistance in type 2 diabetes (DM2) patients and
decreased enzyme activity in human tissues (6). The
mechanism of reduced D2 activity, however, is still not
clear since no significant changes in the biochemical
properties of the mutant enzyme have been detected
(12), thus suggesting that this variant could only be a
marker for abnormal DIO2 expression. The D2
Thr92Ala polymorphism has also been linked to
increased risk for osteoarthritis (13), hypertension
(14), Graves’ disease (15), intelligence quotient altera-
tions associated with iodine deficiency (16), psycho-
logical well-being and response to T3 or T4 treatment
(17), and decreased bone mass and higher bone
turnover (18). Intriguingly, most of these associations
are independent of serum thyroid hormone levels,
which highlight the importance of local regulation of
thyroid hormones in peripheral tissues.

DM2 is a heterogeneous group of disorders, with
varying degrees of insulin insufficiency and insulin
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resistance, which result in increased blood glucose
concentrations. At last, insulin resistance results either
from inappropriately increased hepatic gluconeogenesis
and/or decreased glucose disposal rate in tissues such as
skeletal muscle and adipose tissue. Glucose transporter
type 4 (GLUT4), the insulin-responsive glucose trans-
porter, mediates the rate-limiting step of glucose
metabolism. Thyroid hormones are known to upregu-
late the expression of GLUT4 in skeletal muscle, and
consequently increase glucose uptake (19). Thus, one
could speculate that a lower intracellular D2-generated
T3 in skeletal muscle could create a state of relative
intracellular hypothyroidism, decreasing the expression
of genes involved in energy use, such as GLUT4,
resulting in increased insulin resistance. Nevertheless,
population-based studies failed to demonstrate an
association between the D2 Thr92Ala polymorphism
and increased risk for DM2 (20–22).

Clinical and experimental data support a biological
plausibility for a role of the D2 Thr92Ala variant in
predisposition to DM2, a heterogeneous disease with
many environmental and genetic factor interactions.
In this setting, where both environment factors and
multiple genes play a role in the pathophysiology, it is
not unexpected that genetic association studies fail to
show an association, even when it actually exists.
Accordingly, diabetes has been called ‘a geneticist’s
nightmare’ and, in this context, a huge number of
patients may be needed to clarify the collaboration of a
single polymorphism for this polygenic disease (23).
Here, we sought to further test the hypothesis that
homozygosity for the D2 Thr92Ala polymorphism is
associated with increased risk for DM2. In an attempt to
address the study limitations highlighted above, we
performed a case–control study in a Brazilian population
and a meta-analysis of the literature on the subject.
Research design and methods

Case–control study

DM2 population The sample population consisted of
1057 DM2 patients participating in a multicenter study
that started recruiting patients in Southern Brazil in
2002. That study aimed to evaluate risk factors for DM2
and its complications. Initially, it included four centers
located at general hospitals in the State of Rio Grande do
Sul, namely Grupo Hospitalar Conceição, Hospital São
Vicente de Paula, Hospital Universitário de Rio Grande,
and Hospital de Clı́nicas de Porto Alegre. The detailed
description of that study can be found elsewhere (24).
The sample population presented here includes a
subgroup of 183 patients described in a previous
study (6).

All patients were of European ancestry (mostly
descendants of Portuguese, Spanish, Italians and
Germans). The ethnic group was defined on the basis
www.eje-online.org
of self-classification and subjective classification (skin
color, nose and lip shapes, hair texture, and family
history). A standard questionnaire was used to collect
information about age, age at DM2 diagnosis, and drug
treatment. All patients underwent physical and labora-
tory evaluations. They were weighed without shoes and
in light outdoor clothes, and had their height measured.
Body mass index was calculated as follows: weight
(kg)/height (m)2. Blood pressure (BP) was measured
twice after a 5-min rest in the sitting position using a
mercury sphygmomanometer (Korotkoff phases I and
V). The mean value of two measurements was used to
calculate systolic and diastolic BP.

Diabetes was defined as treatment with either insulin
or an oral hypoglycemic agent or a fasting plasma
glucose of at least 126 mg/dl (7.0 mmol/l) at two or
more examinations, 2-h 75-g oral glucose tolerance test
plasma glucose of at least 200 mg/dl (11.1 mmol/l), or
random plasma glucose of 200 mg/dl (11.1 mmol/l) or
higher (25). Patients were classified as DM2 based on
patients’ age (30-year-old or older), upon the need or
not for insulin at diagnosis, and absence of ketones in
the urine. Microvascular and macrovascular compli-
cations were accessed at study entry.

Nondiabetic control population A group of 516
nondiabetic volunteers attending the blood donation
facility of Hospital de Clı́nicas de Porto Alegre (Porto
Alegre, Brazil) constituted our control group. A
standard questionnaire was used to collect information
about age, sex, skin color, and presence of comorbidities
(e.g. systemic arterial hypertension) and drug treatment
from controls.

Protocol ethical approval The information obtained
from the study did not influence the patient’s diagnosis
or treatment. The local ethics committee approved the
protocol, and all patients signed an informed consent
form.

Laboratory tests In DM2 patients, a serum sample was
collected after a 12-h fast. Glucose levels were
determined by a glucose oxidase method and HbA1c by
an ion-exchange HPLC procedure (Merck-Hitachi L-9100
HbA1c analyzer, Merck; reference range: 2.7–4.3%).
Serum insulin was measured by electrochemilumines-
cence (ElecsysR Systems 1010/2010/modular analytics
E170, Roche Diagnostics). The intra- and inter-assay
coefficients of variation were 1.5 and 4.9% respectively.
Insulin sensitivity was estimated by homeostasis
model assessment (HOMAZfasting insulin (milliunits
per milliliter)!fasting glucose (millimoles per
liter)/22.5), as recently described and validated (26).
Additionally, triglyceride and cholesterol levels were
measured by enzymatic methods, and low-density
lipoprotein cholesterol (LDL) was calculated using the
Friedewald equation: (LDL cholesterolZtotal cholesterolK
HDL cholesterolKtriglycerides/5).
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In nondiabetic subjects, no laboratory measures were
performed.

Genotyping DNA was extracted from peripheral blood
leukocytes by a standardized salting out procedure.
Primers and probes contained in the Human Custom
TaqMan Genotyping Assay 40! (Applied Biosystems,
Foster City, CA, USA) were used for genotyping our
samples. One allelic probe was labeled with VIC dye, and
the other was labeled with FAM dye. The reactions were
conducted in a 96-well plate, in a total 5-ml reaction
volume using 2 ng genomic DNA, TaqMan Genotyping
Master Mix 1! (Applied Biosystems), and Custom
TaqMan Genotyping Assay 1!. The plates were then
positioned in a real-time PCR thermal cycler (7500 Fast
Real PCR System; Applied Biosystems) and heated for
10 min at 95 8C followed by 50 cycles of 95 8C for 15 s
and 63 8C for 1 min. Fluorescence data files from each
plate were analyzed using automated allele-calling
software (SDS 2.1; Applied Biosystems).

Patients were classified in groups of Ala/Ala or
Ala/Thr–Thr/Thr according to the presence of the Ala
allele. All amplification reactions were performed twice.
The genotyping success was more than 95%, with a
calculated error rate based on PCR duplicates of 0%.

Statistical analyses Results were expressed as frequen-
cies, meanGS.D. (27) or median and percentile 25–75
(P25–75). Allelic frequencies were determined by gene
counting, and departures from the Hardy–Weinberg
equilibrium were verified using c2 tests. Clinical and
laboratory data were compared using c2, unpaired
Student’s t-test, Mann–Whitney U test, ANOVA,
Kruskal–Wallis H test, or multiple logistic regression
analysis as appropriate. A two-tailed P!0.05 was
considered statistically significant, and all analyses
were performed by SPSS version 15.0 (SPSS, Chicago,
IL, USA).
Meta-analysis

Search strategy The electronic databases Medline,
Embase, LiLacs, and SciELO were searched for studies of
genetic association between the D2 Thr92Ala poly-
morphism and DM2. We also searched the abstracts of
the major diabetes and thyroid meetings over the last 4
years. We limited the search to humans and used the
following strategy: ‘rs225014’ odds ratio (OR)
‘thr92ala’ OR ‘T92A’ OR ‘dio2 a/g’. The reference lists
of all identified articles were also searched, and authors
of included studies were consulted to obtain additional
information when needed. For inclusion in the meta-
analysis, we considered as attending the inclusion
criteria both: i) observational studies (cohort, case–
control, and cross-sectional studies) on the D2
Thr92Ala polymorphism and ii) that included patients
with and without DM2.
Two investigators (J M D and W E M), blinded to each
other’s rating, independently assessed study eligibility.
All data were independently abstracted in duplicate
using a standardized abstraction form. Differences in
data extraction were resolved by a third party (A L M)
and by referencing the original publication.
Statistical analyses

Data from the selected studies were retrieved and
annotated according to the presence or the absence of
DM2. The frequencies of each genotype of the D2
Thr92Ala polymorphism in DM2 and in nondiabetic
controls from all studies were pooled. The OR and their
95% confidence intervals (95% CI) for individual
studies, and for the pooled effect were calculated with
the Mantel–Haenszel, the DerSimonian and Laird, and
Peto’s methods, using random effect and fixed effect
models. Heterogeneity was tested with the Cochran Q
test and inconsistency accessed through the I2.
Additionally, sensitivity analysis was performed omit-
ting one study at a time to evaluate the influence of each
study on the pooled estimate. We used the programs
Review Manager 5 (28) and MIX version 1.7 (29) for
data analysis, and the study was designed and described
in accordance with current guidelines (30–32).
Results

Case–control study

The baseline characteristics of the 1057 DM2 patients
and 516 nondiabetic control subjects regarding age in
years and sex were respectively the following: mean age
59.3G10.0 (age at diagnosis 47.4G10.9) and 46.2
G8.8, PZ0.02; females comprised 53% (nZ558) and
37% (nZ191) of study groups, P!0.005 (Table 1).

The frequency of the minor Ala allele was 0.38 in
DM2 patients and control subjects. In the DM2 group,
381 (36%) individuals were homozygous for the Thr
allele, 503 (47.6%) were heterozygous (Thr/Ala), and
173 (16.4%) were homozygous for the Ala allele. In the
group control, 195 subjects for the Thr allele (37.8%),
259 (50.2%) were heterozygous, and 62 (12.0%) were
homozygous for Ala allele. The genotypes were in
Hardy–Weinberg equilibrium (PZ0.96). The frequency
of homozygotes for the Ala allele was significantly
higher in the DM2 group than in controls (16.4 vs
12.0% respectively; PZ0.03). This resulted in an OR of
1.43 (95% CI 1.05–1.96, PZ0.03) for the Ala/Ala
genotype in DM2 patients. Because the DM2 and
control groups differed by age and sex (Table 1), we
performed a multiple logistic regression analysis with
age, sex, and genotype as independent variables and
DM2 as the dependent variable. The Ala/Ala genotype
remained significantly associated with DM2 with an
adjusted OR of 1.41 (95% CI 1.03–1.94, PZ0.03).
www.eje-online.org
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Table 1 Characteristics of type 2 diabetes and nondiabetic individuals (controls). Data are expressed as meanGS.D. or median (P25–P75).

Type 2 diabetes Controls

All (nZ1057) Ala/Ala (nZ173) Ala/Thr–Thr/Thr (nZ884) All (nZ516)

Age (years)*,a 47.4G10.9 46.9G10.7 47.5G11.0 46.2G8.8
Female sex (n (%))* 558 (52.8) 98 (56.6) 460 (52.0) 191 (37.1)
Fasting glucose (mg/dl) 169G65 173.3G71.6 167.6G63.3 NA
Fasting insulin (mIU/ml)† 11.7 (6.8–18.7) 16.8 (8.9–25.8) 11.3 (6.7–18.1) NA
HbA1c (%)† 7.7G2.5 8.4G2.6 7.6G2.5 NA
HOMA index† 5.1 (2.6–8.8) 8.5 (5.2–14.1) 4.5 (2.5–8.1) NA
A allele frequency 0.38 0.38

NA, not available; HOMA, homeostasis model assessment (fasting insulin (mIU/ml)!fasting glucose (mmol/l)/22.5). To convert glucose from mg/dl to mmol/l,
divide by 18 or multiply by 0.055. *Statistically significant comparisons between all type 2 diabetes versus nondiabetic subjects (PZ0.02 for age and P!0.005
for sex). †Statistically significant comparisons between Ala/Ala versus Ala/Thr–Thr/Thr genotypes (PZ0.01 for fasting insulin, PZ0.01 for HbA1c, and
P!0.005 for HOMA index). Statistical analysis: unpaired Student’s t-test for age, fasting glucose, and HbA1c; Mann–Whitney U test for fasting insulin and
HOMA; and c2 test for sex and A allele frequency.
aFor type 2 diabetes, age at diagnosis was used for comparison with age of controls.

28 records identified and screened
through database search with

the following terms: 'thr92ala' OR
'dio2 a/g' OR 'rs225014' OR 't92a' 

25 full-text articles assessed
for eligibility

3 excluded because the type 2
deiodinase Thr92Ala

polymorphism was not analyzed

11 excluded because the presence
of diabetes was not evaluated in
the study population.
4 excluded because systemic disease
was an exclusion criterion.
3 excluded because diabetes was
an exclusion criterion.
2 excluded because only diabetic
subjects were included
1 excluded because data regarding
diabetic population was unextractable
1 excluded because it was a response

430 J M Dora and others EUROPEAN JOURNAL OF ENDOCRINOLOGY (2010) 163
Assuming a recessive model, patients with Ala/Thr
and Thr/Thr genotypes were grouped and compared
with patients with Ala/Ala genotype. The diabetes
duration (10 (5–17) years), systolic (142G23 mmHg)
and diastolic (85G13 mmHg) BP, microvascular (67%)
and macrovascular (58%) complications, renal function
(creatinine 0.9 (0.8–1.1) mg/dl), and nonglycemic
metabolic control (high-density lipoprotein cholesterol
45G12 mg/dl; LDL cholesterol 129G42 mg/dl; total
cholesterol 208G46 mg/dl; and triglycerides 150
(105–217) mg/dl) were similar across the D2 genotypes
in the type 2 diabetes patients (data not shown). There
was a tendency toward higher fasting glucose levels in
the DM2 patients harboring the Ala/Ala genotype
(fasting glucose 173G71 vs 167G63 mg/dl, for
Ala/Ala versus Ala/Thr–Thr/Thr respectively
PZ0.06). Confirming our previous report, subjects
with the Ala/Ala genotype had increased insulin levels
(fasting insulin 16.8 (8.9–25.8) vs 11.3 (6.7–18.1)
mIU/ml, for Ala/Ala versus Ala/Thr–Thr/Thr respect-
ively PZ0.01) and increased insulin resistance (HOMA
index 8.5 (5.2–14.1) vs 4.5 (2.5–8.1), for Ala/Ala
versus Ala/Thr–Thr/Thr respectively P!0.005). More-
over, the glycemic control, assessed by HbA1c levels,
were worst in the group of patients with the Ala/Ala
genotype (HbA1c 8.4G2.6 vs 7.6G2.5% respectively
PZ004), despite comparable antidiabetic therapy
(metformin 42.7 vs 37.7%, PZ0.44; sulfonylureas
34.7 vs 31.7%, PZ0.60; insulin 41.4 vs 40.2%,
PZ0.82 for Ala/Ala versus Ala/Thr–Thr/Thr respect-
ively). Eighty-four patients (8%) were not receiving drug
therapy (diet/exercise alone).
3 studies from database search
included in the meta-analysis

This study

4 studies included in
the meta-analysis

letter with no different data from the
original article.

Figure 1 Flowchart of search results for the meta-analysis of the D2
Thr92Ala polymorphism association with type 2 diabetes.
Meta-analysis

A literature search using the terms ‘rs225014’ OR
‘thr92ala’ OR ‘T92A’ OR ‘dio2 a/g’ retrieved 28 articles
dealing with D2 Thr92Ala polymorphism. Out of them,
18 studies were excluded because they did not include
data on the presence or the absence of diabetes, four
because the presence of diabetes was an exclusion
www.eje-online.org
criteria, one because it included only diabetic patients,
and one because data of the diabetic and nondiabetic
populations was nonextractable. Thus, we identified
three observational studies (two cross-sectional and one
case–control) that analyzed the Thr92Ala poly-
morphism in DM2 and nondiabetic subjects (Fig. 1)
(20–22). Therefore, the meta-analysis included four
studies: three identified through database search, and
our case–control study. The demographic and glycemic
characteristics of the populations included in each study
are described in Table 2.

The study of Mentuccia et al. (20) looked at the Amish
population (OR 1.40, 95% CI 0.78–2.51); Maia et al.
(21) analyzed data from the Framingham Study (OR
1.22, 95% CI 0.78–1.92); and Grarup et al. (22) studied
a large cohort of Danish (OR 1.09, 95% CI 0.92–1.29).
Neither heterogeneity (QZ2.64, PZ0.45) nor
Downloaded from Bioscientifica.com at 08/01/2022 05:38:42PM
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Table 2 Characteristics of the populations of the four studies that evaluated the genetic association of the type 2 deiodinase Thr92Ala
polymorphism with type 2 diabetes. Data are expressed as meanGS.D.

Author (reference) Mentuccia et al. (20) Maia et al. (21) Grarup et al. (22) This study

Year of publication 2005 2007 2007 2010
Individuals studied (n) 1268 1631 7000 1573
Type 2 diabetes subjects (n (%)) 179 (14.1) 170 (10.4) 1405 (20.1) 1057 (67.2)
Age (years) 45.5G0.6 62.0G9.0 48.5G9.2 54.8G11.4
Female sex – (n (%)) 707 (55.8) 841 (51.6) 3563 (50.9) 750 (47.7)
BMI (kg/m2) 27.2G0.2 28.2G5.2 29.6G5.3a 28.9G5.0a

Fasting glucose (mg/dl) 91G1 106G27 NA 169G65a

HbA1c (%) 5.2G0.1 5.7G1.0 7.8G1.7a 7.7G2.5a

A allele frequency 0.30 0.37 0.36 0.38

BMI, body mass index (weight (kg)/height (m)2); NA, not available. To convert glucose from mg/dl to mmol/l, divide by 18 or multiply by 0.055.
aData from the type 2 diabetes subjects of the study.
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inconsistency (I2Z0%) across studies was detected.
Combining the results of the four studies, applying the
fixed effect model resulted in an estimate Peto pooled OR
of 1.18 (95% CI 1.03–1.36, PZ0.02; Fig. 2). The results
were very similar (all statistically significant), when
using the Mantel–Haenszel, the DerSimonian and Laird
methods, and the random effect model (data not shown).

The weight of each study on the pooled estimate was
as follows: Mentuccia 5.6%, Maia 9.3%, Grarup 65.3%,
and ours 19.7%. Omission of one study at a time was
performed to verify the impact of each study on the
estimate effect. Analysis with the omission of the studies
of Mentuccia, Maia, Grarup, and ours resulted in similar
effect estimates, with calculated OR of 1.18 (95% CI
1.00–1.40, change in OR estimate C0.4%), 1.21 (95%
CI 0.99–1.47, change in OR estimate C2.8%), 1.37
(95% CI 1.08–1.73, change in OR estimate C16.2%),
and 1.12 (95% CI 0.96–1.31, change in OR estimate
K4.7%) respectively. All the calculations of the
sensitivity analysis provided effect estimates similar to
the pooled OR of the four studies, reinforcing the
homogeneity between the studies included in our meta-
analysis, and excluding a dominant influence of one
study in the magnitude of the effect estimate.
Study

Maia 2007 USA

Mentuccia 2005

All

1.5 20.5 0.7 1

Odds ratio (95% CI)

Test for heterogeneity: P = 0.45

Inconsistency: I 2 = 0%

USA

Group 2007 Denmark

This study Brazil

Country

Odds ratio

(95% CI)

1.43 (1.05–1.96) 62/516 (1

1.40 (0.78–2.51) 66/703 (9

1.18 (1.03–1.35) 1025/827

1.09 (0.92–1.29) 715/5595

1.22 (0.78–1.92) 182/1462

Nondiab

Ala/Ala
Discussion

DM2 is a highly heterogeneous disease with multiple
environmental and genetic factors involved in its
pathogenesis. Here, we have performed a case–control
study and a meta-analysis of genetic association studies,
which demonstrate that homozygosis for the Ala allele
of the single-nucleotide polymorphism Thr/Ala in
codon 92 of the D2 is associated with increased risk
for DM2 in the general population.

D2 is a key enzyme in determining intracellular T3

concentration, and might have a critical role in
metabolic activity of skeletal muscle, analogous to its
role in BAT (1, 33, 34). Chronic adrenergic stimulation
in adult humans was found to increase both resting
energy expenditure (35) and serum T3 to T4 ratio (33),
suggesting the existence of an adrenergic-dependent T4

to T3 conversion pathway (36). In addition, in patients
receiving T4 replacement, resting energy expenditure
correlated directly with free T4 and inversely with
serum TSH but, interestingly, not with serum T3 (34).
These data are consistent with a role for T4 via D2-
dependent intracellular T3 production in skeletal muscle
as a significant physiological determinant of energy
2.0%) 173/1057 (16.4%)

.4%) 16/126 (12.7%)

6 (12.4%) 407/2757 (14.8%)

 (12.8%) 193/1405 (13.7%)

 (12.4%) 25/169 (14.8%)

etics Type 2 diabetes

 genotype/all genotypes (%)

Figure 2 Individual and pooled odds ratios
(OR) and 95% confidence intervals (95%
CI) estimate for type 2 diabetes association
with the Ala/Ala genotype of the type 2
deiodinase. Statistical analysis: pooled OR
estimated through the Peto method (fixed
effect model); heterogeneity tested with the
Cochran Q test (QZ2.64, PZ0.45) and
inconsistency accessed through the
I2 (I2Z0%).
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expenditure in humans. Moreover, recent evidence
shows that BAT is present and active in adult humans,
and that D2-mediated T3 production in this tissue might
be important for thermal adaptation and metabolic
activity (37).

Previous studies demonstrated that homozygosity for
the Ala allele of the D2 Thr92Ala polymorphism was
associated with w20% lower glucose disposal rate in
nondiabetic Caucasians (11). The frequency of the
variant allele was also found to be increased in some
ethnic groups, such as Pima Indians and Mexican–
Americans, who also have a higher prevalence of
insulin resistance (11). Accordingly, we have previously
demonstrated that the D2 Ala/Ala genotype was
associated with increased insulin levels and HOMA
index in patients with DM2, whereas decreased D2
activity was found in sample biopsies of individuals
harboring this genotype (7). Here, we have further
confirmed the D2 Ala/Ala genotype association with
increased insulin resistance (increased HOMA index),
and demonstrated that this genotype is also associated
with worse glycemic control (increased HbA1c levels) in
a cohort of 1057 DM2 subjects.

Taken together, these observations raised the
hypothesis that the D2 Thr92Ala polymorphism
would be associated with increased risk for DM2.
However, despite a statistically nonsignificant tendency,
all studies performed on this subject have failed to
demonstrate such an association (Fig. 2). Using cross-
sectional designs, Mentuccia et al. (20) have studied
1268 subjects of the Old Order of Amish (Philadelphia,
PA, USA), whereas Maia et al. (21) evaluated a subset of
1631 subjects from the Offspring Cohort of the
Framingham Heart Study (Framingham, MA, USA).
DM2 comprised 14.1% (179 individuals) and 10.4%
(170 individuals) of the populations of the Mentuccia
and Maia studies respectively.

Grarup et al. (22) studied 7342 white subjects from
Glostrup and Copenhagen (Denmark), in a mixed case–
control and cross-sectional design. In this study, in the
unadjusted analyses, an association was verified
between the D2 Ala/Ala genotype and glycemic traits
of insulin resistance: an increased area under serum
insulin curve during the oral glucose tolerance test
and elevated fasting plasma glucose in the D2
Ala/Ala group. No increased risk for DM2 was found.
It is interesting to highlight, however, that the
control group of this study comprised of patients
younger than the cases (age of 46.4G8.8 vs
51.3G11.2 years, for controls versus DM2 patients
at diagnosis respectively; difference 4.9 years (95% CI
4.3–5.5), P!0.001).

The contribution of a single gene to a polygenic
disease is determined by the prevalence of the implicated
allele and the magnitude of the association with the
condition (38). In this context, underpowerment is a
concern in genetic association studies in a disease such
as DM2. For instance, despite all the research efforts in
www.eje-online.org
this area, the DM2 has only a 6% estimated proportion
of heriditability explained by the 19 loci associated with
the disease (27, 38). The magnitude of effect of the
described genetic variants associated with the disease is
of OR 1.14; 1.12–1.16 (median; P25–75) (23). In this
scenario, the assumptions made in previous studies (21,
22) for a presumed magnitude of a Thr92Ala
polymorphism association with DM2 of OR 1.9 and
1.3 might be over estimated.

Therefore, assuming a smaller magnitude of effect for
the D2 Thr92Ala polymorphism on DM2 risk and the
need of a large number of patients to rule out a role of
this gene, we have designed a case–control study that
included a large number of type 2 diabetic patients
(1057 individuals) and performed a meta-analysis of
the data on the subject. In the case–control study, the
frequency of the Ala allele in homozygosis was
significantly higher in DM2 than in control subjects
(16.4 vs 12.0%, PZ0.03). These frequencies, after
adjusting for sex and age, resulted in an OR of 1.41 (95%
CI 1.03–1.94) for Ala/Ala genotype in DM2 patients.
The literature search identified one case–control and
two cross-sectional studies on the subject, detailed
above (Table 2). Despite the different designs employed
(case–controls and cross-sectionals) and the different
genetic background of the populations (North-Amer-
icans, Europeans, and South-Americans), the results
showed neither inconsistency nor heterogeneity in the
pooled data from the four studies. The direction of the
estimate was same in the four studies, and moreover,
the sensitivity analysis demonstrated that the effect
estimate was consistent across studies. The meta-
analysis OR of 1.18 (95% CI 1.03–1.35) reflects an
increased risk for DM2 attributable to the homozygosity
of the Ala allele of around 10% (95% CI 1–21%). This is
a meaningful magnitude of effect for a single poly-
morphism in a polygenic disease like DM2. As an
example, the Ala allele of the well-characterized
Pro12Ala substitution in the peroxisome proliferator-
activated receptor g (PPARg or PPARG) gene accounts
for a near 20% decreased risk for DM2 (39), and most of
the other genes implicated in DM2 risk have magnitudes
of effects !10% (23).

The finding that D2 single-nucleotide polymorphism
is associated with increased risk for DM2 has relevant
clinical implications. One notable aspect is that most of
the genetic loci that were identified in association
studies of DM2 seem to affect insulin secretion (23), not
insulin sensitivity such is this case. In the context of the
current pandemics of obesity and obesity-attributable
insulin resistance, the identification of a pathogenic
genetic trait that contributes to increased insulin
resistance and increased risk for DM2 constitutes an
important step for better understanding of the
mechanism of disease. Indeed, these results might
support a role for intracellular T3 concentration in
DM2 pathogenesis and might constitute a potential
target to specific therapies (1, 7, 9).
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Despite all our efforts, we are aware that some factors
unrelated to the D2 Thr92Ala polymorphism could
have interfered with the findings of this study. Meta-
analysis method is notoriously prone to publication
bias, and although we have attempted to trace
unpublished observations, we cannot assure that
small negative studies were overlooked. Moreover, one
of the identified studies was not included in this meta-
analysis because data regarding diabetic population was
unextractable (40).

In conclusion, our results demonstrate that the
Ala/Ala genotype of D2 is associated with increased
risk for DM2. In a case–control study of 1573 patients
and in a meta-analysis of four studies with 11 033
subjects, this genotype was associated with increased
risk for DM2 in the general population, a finding
that might represent an advance in understanding the
genetic contribution to the pathogenesis of the disease.
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