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R
ecent worldwide epidemiological studies dem-
onstrate that the incidence for type 1 diabetes in
most regions has been increasing by 2–5% and
that type 1 diabetes prevalence in the U.S. is ap-

proximately 1 in 300 by the age of 18 (1). In other regions,
the rate of increase has been even higher. For example, just
35 years ago type 1 diabetes was a very rare disorder in
China, but recent rapid economic development along with
changes in lifestyle and, presumably, the living environment
have rendered this country with an annual increase of 7.4%
for type 1 diabetes prevalence (2). Indeed, the incidence of
type 1 diabetes among different geographic/ethnic regions
varies up to 500-fold (3). The dramatic increase of type
1 diabetes incidence worldwide in genetically stable pop-
ulations, the significant international discrepancies for dis-
ease incidence, and reports of increased incidence when
individuals migrate from low-incidence to high-incidence
areas (4,5) cannot be accounted for by the genetic factors
alone—thus demonstrating the implication of the complex
interactions between susceptibility genes, the environmental/
stochastic factors, and the immune system in type 1 diabetes
etiology.

The famous “hygiene hypothesis” has been frequently
used to explain the rapid increase and discrepancy of type
1 diabetes incidence (6). It is believed that our increasingly
hygienic environment, resulting from improvements in
health care delivery and sanitation, has decreased the
frequency of childhood infections, perhaps resulting in
concomitant alterations in the gut microbiome, leading to
a modulation of the developing immune system in geneti-
cally predisposed individuals and favoring the development
of autoimmunity. Indeed, recent studies revealed that the
composition of gut bacteria in children is linked to the risk
for type 1 diabetes development (7). Studies in animals fur-
ther support that exposure to an appropriate amount and
composition of bacteria provides protection for NOD mice
against type 1 diabetes development (8). Nevertheless, how
a type 1 diabetes–susceptible gene reshapes the gut micro-
biome predisposing an individual to the development of
autoimmune responses against b-cell self-antigens is yet to
be elucidated.

This said, the FUT2 gene represents an ideal candidate
that bridges genetic susceptibility and alterations in the gut
microbiome to modulate the immune system in early life
(Fig. 1). FUT2 is located on Chr19q-13.33 and encodes the
a(1,2) fucosyltransferase responsible for the synthesis of
H antigen, which is the precursor of the ABO histo-blood
group antigens in body fluids and on the surface of the
intestinal mucosa. Individuals that are homozygous for any
nonfunctional FUT2 allele fail to present ABO antigens in
secretions and on the intestinal mucosa (called nonsecre-
tors or se individuals), while those subjects carrying at least
one functional FUT2 allele can express ABO on secretions
(called secretors or Se individuals) (9). It is noteworthy that
the FUT2 nonsecretor phenotype has been noted to be as-
sociated with alterations in the gut microbiome (10), with
recent studies demonstrating that it confers genetic suscep-
tibility to Crohn’s disease (11,12). Keeping these facts in
mind, Smyth et al. (13) conducted a genetic study for the
FUT2 nonsecretor allele in type 1 diabetes susceptibility
using 8,344 type 1 diabetic case subjects, 10,008 control
subjects, and 3,360 type 1 diabetic families. They genotyped
the nonfunctional allele se428 (single nucleotide polymor-
phism rs601338, A.G) that is unique to subjects of European
origin, which encodes a stop codon at position 143 (X143W).
They demonstrated convincing evidence supporting a reces-
sive association between type 1 diabetes and rs601338. Spe-
cifically, in the case/control dataset, the odds ratio for the
homozygous nonfunctional allele A/A against A/G and G/G
was 1.29 (95% CI 1.20–1.37; P = 7.3 3 10214). Similarly, the
familial dataset demonstrated a relative risk of 1.22 (95%
CI 1.12–1.32; P = 6.8 3 1026) for A/A against A/G and G/G.
The evidence was further strengthened by combining
the two datasets (P = 4.3 3 10218). To determine whether
rs601338 is the only causative variant within this chro-
mosomal region, they combined the rs601338 genotype
data with another dataset containing 116 single nucleotide
polymorphisms flanking this region and originating from
a genome-wide association study (14), followed by a step-
wise regression analysis in 3,419 case and 3,524 control sub-
jects—an analysis that failed to obtain convincing evidence
supporting independent effects in Chr19q-13.33 region.

Failure to secrete ABO blood group antigens on the in-
testinal mucosa has been noted to alter the gut microbiome
(10) associated with resistance to a variety of infectious
diseases (15–18). Therefore, the study by Smyth et al. pro-
vides a unique target to dissect the underlying mechanisms
between the interactions of genetic risk factors and envi-
ronmental impacts in type 1 diabetes pathogenesis. The
gastrointestinal tract contains the largest surface area of
the body, which is also the greatest area with constant
exposure to a variety of environmental insults such as
microorganisms, food antigens, and toxins. Diverse micro-
organisms inhabit the gastrointestinal tract and are un-
likely to be just innocent bystanders but active players in
modulating host immune defense. The microbiome may
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also be modulated by dietary compounds and host (i.e.,
genetic) factors from the early days of life (19). In line
with this notion, the FUT2 se428 null allele was found to
be selected under evolutionary pressure (9). This natural
selection on the one hand is beneficial for humans against
bacterial (10), fungi (15) and viral infections (17,18), but on
the other hand may affect gastric mucosa glycosylation, an
essential process for the adherence of microorganisms to
the mucosal epithelial cells and the mucus layer lining the
gastric epithelium (20). As a consequence, it reshapes
microbiome composition in the gut (7,10), potentially con-
tributing to decreased antigenic stimulation in early life in
the modern society, which would predispose those individ-
uals with increased risk to the development of autoimmune
responses against b-cell self-antigens (Fig. 1).

Yet, functional data relevant to the FUT2 nonsecretor
phenotype in type 1 diabetes susceptibility are currently
lacking. But there is evidence that the Fut2-null mice
surface mucosal cells mimic nonsecretor gastric epithelial

cells in humans (20). Therefore, it would be interesting to
examine whether the Fut2-null mice confer increased risk
for type 1 diabetes development. It would also be impor-
tant to examine whether other FUT2 nonsecretor genotypes
related to the corresponding populations confer genetic
susceptibility to type 1 diabetes development. These and
other studies (including analysis of the gut microbiome in
various FUT2 genotypes) will be required to tie in the com-
plex interplay between genetics and environment in type 1
diabetes pathogenesis.
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FIG. 1. A model for the potential implication of interactions between the FUT2 nonsecretor status and the gut microbiome in the pathogenesis of
type 1 diabetes (T1D). The FUT2 nonsecretor (se) allele was naturally selected under evolutionary pressure to protect hosts against bacterial,
fungi, and viral infections by altering the profile of mucosa glycosation, which then prevents the adherence of microorganisms to the mucosal
epithelial cells and the mucus layer lining the gastric epithelium. While this protective effect is beneficial for host defense, it also imbalances the
microbiome in the gut associated with decreased antigenic stimulation to the immune system in early life of subjects in the modern society, which
would predispose those individuals homozygous for the nonsecretor allele with increased risk to the development of type 1 diabetes. (A high-
quality digital representation of this figure is available in the online issue.)
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