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Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H antigen in
body fluids and on the intestinal mucosa. The H antigen is an oligosaccharide moiety that acts as
both an attachment site and carbon source for intestinal bacteria. Non-secretors, who are
homozygous for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to
Crohn’s disease (CD). To characterize the effect of FUT2 polymorphism on the mucosal ecosystem,
we profiled the microbiome, meta-proteome and meta-metabolome of 75 endoscopic lavage samples
from the cecum and sigmoid of 39 healthy subjects (12 SeSe, 18 Sese and 9 sese). Imputed
metagenomic analysis revealed perturbations of energy metabolism in the microbiome of
non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and lipid
metabolism, cofactor and vitamin metabolism and glycan biosynthesis and metabolism-related
pathways, and the depletion of amino-acid biosynthesis and metabolism. Similar changes were
observed in mice bearing the FUT2� /� genotype. Metabolomic analysis of human specimens
revealed concordant as well as novel changes in the levels of several metabolites. Human
metaproteomic analysis indicated that these functional changes were accompanied by sub-clinical
levels of inflammation in the local intestinal mucosa. Therefore, the colonic microbiota of
non-secretors is altered at both the compositional and functional levels, affecting the host mucosal
state and potentially explaining the association of FUT2 genotype and CD susceptibility.
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Introduction

The human intestinal microbiome contributes vital
biological functions to healthy hosts, including
maintenance of immune homeostasis, modulation
of intestinal development and enhanced metabolic
capabilities (Li et al., 2008; Turnbaugh et al., 2009a;

Lee and Mazmanian, 2010; Qin et al., 2010; Human
Microbiome Project C, 2012). Dysbiosis, which
refers to perturbations of the normally stable
intestinal microbiota, has been associated with the
development and progression of many conditions,
including inflammatory bowel diseases (IBDs)
(Frank et al., 2007; Willing et al., 2010; Lepage
et al., 2011; Morgan et al., 2012), type 2 diabetes
(Qin et al., 2012) and obesity (Turnbaugh et al.,
2009a). The reasons for such associations are not yet
clear and may reflect either causal or secondary
processes due to the impact on microbial composi-
tion and function of inter-individual variability and
the contributions of environment and host genetics

Correspondence: J Braun, Department of Pathology and Labora-
tory Medicine, David Geffen School of Medicine, University of
California Los Angeles, CHS 13-222, Los Angeles, CA 90095-1732,
USA.
E-mail: JBraun@mednet.ucla.edu.
Received 9 October 2013; revised 14 March 2014; accepted
20 March 2014; published online 29 April 2014

The ISME Journal (2014) 8, 2193–2206
& 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14

www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2014.64
mailto:JBraun@mednet.ucla.edu
http://www.nature.com/ismej
albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 



(Spor et al., 2011). The contributions of such factors
on human microbial composition are beginning to
emerge through dietary and environmental studies
(Wu et al., 2011; Claesson et al., 2012; Morgan et al.,
2012; Smith et al., 2013), as well as twin studies
(Zoetendal et al., 2001; Stewart et al., 2005;
Turnbaugh et al., 2009a; Smith et al., 2013).
However, much work is still necessary to fully
understand the extent of host genetic influence on
the composition and function of the gut microbiome
and the mechanisms linking these genetic traits with
microbial function and disease biology.

A recent genome-wide association study published
by our group identified Fucosyltransferase 2 (FUT2)
gene as a Crohn’s disease (CD) risk locus (McGovern
et al., 2010), a finding that has been validated in a
meta-analysis of CD and ulcerative colitis genome-
wide association scans (Jostins et al., 2012). However,
the molecular mechanism of the association between
non-secretor status and CD remains unknown. Mucin
2 (muc2), the predominantly secreted mucin in the
colon, has an important barrier role in intercepting
and excluding bacteria from the mucosal cell surface,
thereby reducing host susceptibility to colitis (Van der
Sluis et al., 2006; Johansson et al., 2008; McGuckin
et al., 2011). Research from our group has shown that
aberrant glycosylation of muc2 core proteins causes
spontaneous colitis in mice (Fu et al., 2011). Both the
core 1- and core 3-derived O-glycans of mucin core
proteins are terminally fucosylated, which serve as
interceptive binding structures for bacteria (Linden
et al., 2008). Moreover, a subset of human intestinal
microbiota produce glycosidases capable of hydrolyzing
a-1,2-fucosyl linkages present in various mucin-type
glycoproteins, as well as mucus glycan structures
that are not capped by fucose (Katayama et al., 2004).
A mass spectrometry-based analysis of insoluble
colonic mucin of both Fut2-null and wild-type mice
(Hurd et al., 2005) identified 17 different oligosac-
charides with up to eight sugar residues of which 11
were neutral, five sulfated and one sialylated. The
most abundant structures were composed of core 2
(Galb1-3(GlcNAc b1-6)GalNAc-) glycan sequence
with some based on core 1 (Galb1-3GalNAc-) glycan
structures. The primary difference in oligosacchar-
ides was the presence of terminal fucose residues
forming the blood group H-type epitope in most of
the oligosaccharides in wild-type mice. In contrast,
all the peaks for oligosaccharides carrying blood
group H-type epitopes were absent in the Fut2-null
mice. Therefore, FUT2 deficiency may alter the
composition of intestinal microbiota by affecting
either microbial adhesion and/or utilization of host-
derived glycans, potentially leading to dysbiosis.

The phylogenetic composition in non-secretor
individuals have been characterized in two studies
recently (Rausch et al., 2011; Wacklin et al., 2011),
showing that the FUT2 genotype was associated
both with deviations of overall community ecology
and with altered abundances of specific microbes.
However, these descriptions did not address the

degree to which these alterations were functional
nor their potential mechanisms of action in IBD risk.
Both questions are of particular interest, because
microbial composition can exhibit large inter-indi-
vidual variations compared with function-based
analyses even in healthy individuals (Qin et al.,
2010). This may also be one of the reasons for
existing between-study discrepancies (Rausch et al.,
2011; Wacklin et al., 2011), other than the difference
between measurements of the luminal/fecal micro-
biota and those at the mucosal surface (Eckburg
et al., 2005). As bacterial colonization largely occurs
in the outer mucous layers (Johansson et al., 2008)
where the residual glycans that fuel bacterial
growth are degraded, lavage sampling of the
mucosal surface compartment coupled with func-
tional and metabolic profiling is arguably more
biologically relevant to host–microbial glycan
metabolism.

We present here a comprehensive description of
the mucosal luminal interface of healthy individuals
distinguished by secretor status, capturing multiple
aspects of the microbial ecosystem including micro-
biome composition, imputed function, metabolome
and proteome. 16S rRNA gene sequencing can be
used to characterize the composition and diversity
of the microbiota, and with recent advances, it
allows us to impute functionality of the microbiome.
Deeper insight into microbial functionality can be
provided by combining 16S rRNA gene sequencing
with proteomic and metabolomic data (Erickson
et al., 2012). We detailed the phylogenetic and
functional profiles of the mucosal microbiome
associated with FUT2 polymorphism, indicating a
strong effect of host genetics on the re-programing of
energy metabolisms into dysbiotic setting. The
combination of multi’omic analysis also provided
us with unprecedented understanding of the
dynamics of host–microbial interaction.

Materials and methods

Subject cohort and lavage sample collection
A subject cohort of 39 individuals (Supplementary
Table S1) was recruited from patients presenting for
screening colonoscopy at Cedars-Sinai Medical Cen-
ter. Following institutional review board approval,
subjects were consented and then included in the
study if colonoscopy did not reveal any mucosal
abnormalities. Enrolled subjects were prepared for
colonoscopy by taking Golytely the day before the
procedure. The mucosal lavage samples representing
the mucosal luminal interface were collected from
cecum and sigmoid colon as described previously
(Li et al., 2011).

Animals
All animal protocols were in accordance with
Administrative Panel on Laboratory Animal Care,
the Stanford Institutional Animal Care and Use
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Committee. Conventionally housed Fut2� /� mice
(B6.129� 1-Fut2tm1Sdo/J; backcrossed 12 genera-
tions with C57BL/6J) were re-derived as germ free
and maintained in gnotobiotic isolators. Eight-week-
old non-littermate germ-free Fut2-deficient Fut2� /�

(n¼ 10), wild-type Fut2þ /þ (n¼ 10; C57BL/6J) and
heterozygous Fut2þ /� (n¼ 8) mice were colonized
with feces obtained from a healthy human donor
(secretor) by oral gavage of 200 ml of human fecal
sample (male, age 38 years, American diet). The
sample was prepared by mixing stored frozen
human fecal sample with filter-sterilized pre-
reduced phosphate-buffered saline. Mice were
singly housed and maintained in gnotobiotic
isolators on a strict 12-h light cycle for the experi-
ment. Mice were fed a standard autoclaved mouse
diet (Purina LabDiet 5K67, LabDiet, St Louis, MO,
USA). Fecal samples were collected 4 weeks after
humanization for 16S rRNA gene sequencing using
the 454 titanium platform.

Genotyping
The single-nucleotide polymorphism rs601338
(G4A) defines secretor status in Europeans and
Africans (Ferrer-Admetlla et al., 2009). We used
rs516246, which is in strong linkage disequilibrium
with rs601338, to infer secretor status. Estimate of
linkage between rs516246 and rs601338 is 100%.
These two single-nucleotide polymorphisms tag
each other perfectly, as they are in perfect LD with
one another, with R2 of 1.0 and D0 of 1.0, according
to Hapmap3 release 2, CEU population. The indivi-
duals with the homozygote A/A genotype are
defined as non-secretors (Supplementary Materials
and Methods). In this cohort, 97% (38/39) of the
subjects are Caucasian. One subject is African
American, who is heterozygous G/A genotype for
rs516246 and therefore categorized as Sese. Mouse
genomic DNA was prepared from ear tissue obtained
by ear punch. PCR amplification using three primers
(F: 50-CCTGCCATGCTTTCTTTCCTG-30, R: 50-ATTC
CTTCTCTGACAGGGTTTGG-30 (WT), 50-TGGGTAA
CGCCAGGGTTTTC-30 (KO)) yielded either a 191-bp
band (Fut2� /� ) or 154-bp band (Fut2þ /þ ) or both
(Fut2þ /� ).

16S rRNA gene sequencing and microbial composition
analysis
Genomic DNA was extracted as previously
described (McHardy et al., 2013). The V4 region of
16S ribosomal RNA genes were amplified and
sequenced on an Illumina HiSeq 2000 (Illumina,
Inc., San Diego, CA, USA) as previously described
(McHardy et al., 2013). HiSeq reads were processed
using QIIME v1.5.0 (Caporaso et al., 2010) with
parameters of: minimum Q-score considered high
quality: 20, maximum number of consecutive low-
quality base calls allowed before truncating: 3, and
maximum number of N characters allowed: 0. All

filtered reads had a length of 101 bp. The number of
reads per sample ranged from 326 481 to 1 021 473,
with a mean of 646 140 and totaling 48 460 491.
Sequence sub-sampling was performed for each
sample at the depth of 300 000 reads per sample.
This normalized data set was used for all the
following analysis, including alpha-diversity analysis,
beta-diversity analysis and imputed metagenomic
analysis. For mouse fecal pellets, after DNA isolation
(MoBio fecal DNA kit, MO BIO Laboratories, Inc.,
Carlsbad, CA, USA), 626 bp amplicons spanning 16S
variable regions 30–50 (V3–V5) were generated using
barcoded forward primer (338F, 906R) (Kashyap et al.,
2013). Samples were sent for pyrosequencing to Duke
ISGP (Durham, NC, USA) using the Roche 454
titanium platform (454 Life Sciences, Branford, CT,
USA). Operational taxonomic units (OTUs) were
picked against the 4 February 2011 version of the
Greengenes database (http://greengenes.lbl.gov/cgi-
bin/nph-index.cgi) (DeSantis et al., 2006), pre-filtered
at 97% identity. For quality control, all the singletons
were removed. After reference-based OTU picking,
97.5% of the total reads were successfully mapped to
the reference Greengenes database. These steps were
performed using QIIME v1.5.0 (Caporaso et al., 2010).
Alpha rarefaction was performed using the number of
observed species, Chao1 and phylogenetic diversity.
The comparison of alpha diversity between the two
groups at certain sampling depths was performed
using a two-sided Student’s t-test. Beta diversity of
16S rRNA gene and imputed metagenomic data sets
were estimated by computing unweighted UniFrac
and Bray–Curtis distances between samples, respec-
tively, using QIIME. Ordination of the resulting
distance matrix was performed using principal coor-
dinate analysis (PCoA). Pair-wise comparisons
between SeSe, Sese and sese individuals were
conducted using the Kruskal–Wallis test to identify
differentially abundant bacterial phylotypes at
phylum and 97% OTU levels. Multiple hypothesis
tests were adjusted to produce a final Benjamini
and Hochberg false discovery rate (FDR; Benjamini
and Hochberg, 1995), and significant association
was considered below a FDR q-value threshold
of 0.25.

Identification of functional microbial communities
(FMCs)
We used 97% OTUs with a minimum of 30 reads in
the data set that were present in450% of samples.
We first defined a co-occurrence similarity measure,
which was used to define the network. Assume that
the vector xi specifies the abundance of the i-th
OTUs across the samples, the pair-wise Sparse
Correlations for Compositional data (SparCC) rij

was inferred from the abundance profile of each
OTU xi and xj as the measurement of co-occurrence
relationship (Friedman and Alm, 2012). A signed
weighted adjacency matrix (network) was defined
by raising rij to a power aij¼ (0.5þ 0.5rij)

b, with b¼ 4
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(Zhang and Horvath, 2005). Modules were defined as
branches of a hierarchical clustering tree based on
the topological overlap measure. The modules were
detected after applying the dynamic tree cut method
(Langfelder et al., 2008). These network modules
(clusters) were interpreted as functional microbial
communities (FMCs). The classical multidimen-
sional scaling of the topological overlap distance
matrix was plotted using the ‘cmdscale’ function in
R (v.2.15.1). To summarize the profiles of co-
occurrence modules, we calculated the eigenOTU,
which is defined as the first right-singular vector of
the standardized module abundance matrix. The
computation is implemented in the R function
module Eigengenes (Langfelder and Horvath, 2008).
As a weighted average abundance profile, it provides
a mathematically optimal way of summarizing the
co-occurrence patterns of all OTUs belonging to each
module (Tong et al., 2013). To identify modules
(FMCs) that were correlated with clinical traits, we
used correlation tests to relate each eigenOTU to the
clinical traits. These steps were performed using
the WGCNA package (version 1.13) in R (version
2.13.1) (Langfelder and Horvath, 2008). R tutorials
explaining the analysis steps can be found on the
webpage: http://www.genetics.ucla.edu/labs/horvath/
CoexpressionNetwork/Rpackages/WGCNA/Tutorials/.

Imputation of microbial gene content and
metagenomes
This study takes advantage of PICRUSt, a program
that infers the metagenome of a sample from its
phylogenetic composition and was recently vali-
dated against conventional deep-sequencing meta-
genomics (Langille et al., 2013). The OTU table was
used as the input file for metagenome imputation of
individual human and mouse samples. For the
metagenomic profiling of FMCs, the OTU table of
the six FMCs was generated with one count for each
97% OTU in a given FMC. The gene content of 2590
KEGG (Kyoto Encyclopedia of Genes and Genomes)
reference genomes was used to infer the approx-
imate gene content of the detected phylotypes using
PICRUSt (v0.1) (http://picrust.sourceforge.net/)
(Langille et al., 2013). The program output the
inferred metagenome represented by KEGG Orthol-
ogy (KO) for each FMC. Taking the PICRUSt KO gene
abundance inferences as inputs, the metabolic
pathways were re-constructed using HUMAnN
(v0.98) (Abubucker et al., 2012). We restricted
our analysis to the KEGG pathways that were
present in at least 90% of the samples. Pair-wise
Kruskal–Wallis tests between SeSe, Sese and sese
individuals were performed to identify imputed
KEGG pathways with differential relative abun-
dance. Multiple hypothesis tests were adjusted to
produce a final Benjamini and Hochberg FDR
(Benjamini and Hochberg, 1995), and significant
association was considered below a FDR q-value
threshold of 0.05.

Mass spectrometry analysis
For metabolomic analysis, each human lavage
samples was subjected to solid-phase extraction to
eliminate a polymeric contaminant believed to
originate from the lubricant used during colono-
scopy preparation. The eluate was dried and
reconstituted in 2% acetonitrile in water before
mass spectrometry analysis. A 5-ml aliquot of
extracted metabolites from each sample was injected
onto a reverse-phase 50� 2.1 mm ACQUITY 1.7-mm
C18 column (Waters Corp., Milford, MA, USA) using
an ACQUITY UPLC system (Waters Corp.). A Waters
Q-TOF Premier was operated in negative-ion (ESI� )
or positive-ion (ESIþ ) electrospray ionization mode
with a capillary voltage of 3200 V and a sampling
cone voltage of 20 V in negative mode and 35 V in
positive mode. Data were acquired in centroid
mode with a mass window of 50 to 850 m/z and
processed using MassLynx software (Waters Corp.)
(Supplementary Materials and Methods). To profile
the meta-proteome of lavage samples, matrix-
assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS) was per-
formed using the soluble fraction of samples as
previously described in Li et al. (2011). The
abundances of metabolomic and proteomic peaks
were compared using analysis of variance (ANOVA)
to identify features associated with FUT2 genotype.
Multiple hypothesis tests were adjusted to produce
a final Benjamini and Hochberg FDR (Benjamini and
Hochberg, 1995), and significant association was
considered below a FDR q-value threshold of 0.25.
The relatively high FDR was used to avoid exces-
sively strict filtering of metabolomic and proteomic
features.

Results

Whole-community microbiome ecology differs
according to secretor status
To study the host–microbial interaction at the
mucosal luminal interface, 75 lavage samples were
collected from the cecum and sigmoid colons of 39
healthy subjects (Supplementary Table S1). We
assessed differences in overall microbial ecology
between secretors (both homozygous SeSe and
heterozygous Sese for the functional allele) and
non-secretors (sese).

We first examined the microbial composition in
these samples, to affirm that the present cohort
matched previously reported differences between
secretors and non-secretors in microbial composi-
tion (Rausch et al., 2011; Wacklin et al., 2011). The
microbiota from these samples was profiled by
multiplex sequencing, and a total of 47 171 132
reads (628 948±130 744 s.d. reads per sample) were
generated after quality control. A total of 4074 OTUs
were then identified by grouping reads at a 97%
sequence similarity threshold. Compared with
SeSe individuals, both Sese and sese individuals
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exhibited lower alpha-diversity based on the num-
ber of observed species (t test, P¼ 0.012 and 0.085,
respectively), although the difference between SeSe
and sese individuals was not statistically significant
(Supplementary Figure S1a). We also measured
other diversity indexes, including Chao1 and
phylogenetic diversity. Compared with SeSe indivi-
duals, Sese individuals exhibited significantly
lower alpha-diversity as indicated by Chao1 and
phylogenetic diversity indexes at the depth of
300 000 reads per sample (t test, P¼ 0.019 and
0.02, respectively). The same trend was observed
in sese individuals, although not statistically
significant (t test, P¼ 0.10 for Chao1 and 0.18 for
phylogenetic diversity) (Supplementary Figures S1b
and c).

The beta-diversity measured by unweighted
UniFrac distance matrix was calculated for each
sample to evaluate the similarity between microbial
communities. PCoA demonstrated that the phyloge-
netic compositions of SeSe microbiomes were
significantly different from those of Sese (Adonis
test, P¼ 0.016) but not of sese individuals (Adonis
test, P¼ 0.092) (Supplementary Figure S2a). The
significant difference in phylotype abundances
reported previously, namely, the increase in Bacter-
oidetes among non-secretors, was confirmed at the
phylum level (Rausch et al., 2011) (Supplementary
Figure S2b).

To analyze at lower taxonomic levels, we filtered
out low-abundant 97% OTUs based on the criteria of
(1) minimum total observation count of 30 across all
samples and (2) being observed in at least 60%
of the samples, reducing the number of OTUs from
4074 to 419. Among these OTUs, 19 (4.5%)
of them were depleted in Sese and sese compared
with SeSe individuals (Kruskal–Wallis, FDR
qo0.25) (Supplementary Data set S1). In summary,
the FUT2 polymorphism was significantly associated
with selected phylotypes of colonic microbiota in
Sese and sese individuals, and the alterations in
Sese individuals resulted in a significant shift of
microbial composition compared with SeSe. These
data revealed the gardening effect of FUT2 poly-
morphism on phylogenetic composition of the
colonic microbiota.

Non-secretor-associated functional changes revealed
by imputed metagenomes
We hypothesized that these compositional changes
result in selectively augmented or deficient func-
tional capabilities that may be relevant to CD
susceptibility. To test this idea, we inferred the
metabolic capacities of mucosal microbiota asso-
ciated with secretor status, using a recently devel-
oped bioinformatic pipeline centering on the
PICRUSt (Langille et al., 2013) and HUMAnN tools
(Abubucker et al., 2012). In the ‘gene content
inference’ step, the gene contents and 16S rRNA
gene copy number of the detected phylotype were

predicted based on its evolutionary similarity with
the 1119 KEGG reference genomes. In the subse-
quent ‘metagenome inference’ step, the resulting
gene content predictions for all microbial taxa with
the relative abundance of 16S rRNA genes in each
samples are combined and corrected for expected
16S rRNA gene copy number, to generate the
expected abundances of gene families in the entire
community represented by KOs. The prediction
accuracy of PICRUSt has been validated using
human and mammalian gut microbiome with paired
16S rRNA gene and metagenome sequencing data
(Langille et al., 2013). The relative abundances of
KEGG pathways in each sample were then recon-
structed by mapping KOs to these pathways using
HUMAnN. At our routine sampling depth, both Sese
and sese individuals harbored 15% fewer microbial
genes on average than SeSe individuals (Figure 1a),
which is consistent with the significant lower
compositional diversity observed in Sese indivi-
duals compared with SeSe individuals.

The similarity of functional states of the micro-
biomes from secretors and non-secretors was eval-
uated by the composition of imputed metagenomes.
PCoA using Bray–Curtis distance demonstrated
separation of the samples from SeSe, Sese and sese
individuals along PC1. The clustering of SeSe was
significant compared with both Sese and sese
individuals (Adonis test, P¼ 0.004 and 0.004,
respectively), suggesting that variations at the
metagenomic level were more profound than those
at the compositional level and that FUT2 exhibited
haploinsufficiency in programing the metagenomic
functions (Figure 1b). In support of the distinction
between the phylogenetic and imputed metage-
nomic data sets, Procrustes analysis of the Bray–
Curtis PCoA plots derived from 16S rRNA gene and
imputed metagenome data sets showed that the
clustering of samples across data sets was not
significant (P¼ 0.510; Supplementary Figure S3).
Among the 154 imputed metabolic pathways, 23
(14.9%) were differentially abundant between SeSe
and Sese individuals. The alterations in sese
individuals were greater, as shown by the changes
of abundances of 43 (27.9%) of the imputed path-
ways compared with SeSe individuals (Kruskal–
Wallis, FDR qo0.05) (Supplementary Data set S2,
Supplementary Figures S4 and S5).

The FUT2-associated changes were more robust at
the imputed metagenomic versus the phylotypic
level. As compared with SeSe individuals, a diverse
consortium of metabolic functions represented by 27
KEGG pathways were depleted in sese individuals,
including amino-acid metabolism pathways, cofac-
tors and vitamins metabolism pathways and genetic
information processing pathways (Supplementary
Figure S6). A broad-based decrease in amino-acid
biosynthesis was observed, including lower abun-
dances of lysine (KO00300), valine, leucine and
isoleucine (KO00290), and phenylalanine, tyrosine
and tryptophan (KO00400) biosynthesis pathways.
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Accompanying the depletion, 16 microbial path-
ways were enriched in these individuals, high-
lighted by aspects of energy metabolism, including
carbohydrate and lipid metabolism, cofactors and
vitamins metabolism and glycan biosynthesis and
metabolism (Supplementary Figure S7). These data
suggest that FUT2 gene polymorphism acted in a
haploinsufficient manner to perturb metabolic path-
ways such as amino-acid biosynthesis encoded by
the gut microbiome at the mucosal interface.

To validate these findings, we performed the same
analysis on a 16S rRNA gene data set of the fecal
samples collected from humanized FUT2� /� mice
(germ-free FUT2� /� mice colonized with human
feces from a healthy secretor) (Kashyap et al., 2013).
Among the 146 metabolic pathways reconstructed,

47 (32.2%) of them were differentially abundant
between the FUT2þ /þ and FUT2� /� mice
(Supplementary Data set S3), comparable to our
findings with the human samples. After cross
comparing the two data sets, we identified 13
pathways that were consistently enriched or
depleted with FUT2 haploinsufficiency (Kruskal–
Wallis, FDR qo0.05) (Figure 1c). Specifically, the
carbohydrate and lipid metabolism and glycan
biosynthesis-related pathways were over-repre-
sented in Sese/sese individuals and FUT2þ /�/
FUT2� /� mice, whereas the relative abundances of
five amino acid and vitamin metabolism-related
pathways were enriched in SeSe individuals and
FUT2þ /þ mice (Figure 1c). These findings suggest
that FUT2 genotype had a similar impact on

Figure 1 Imputed metagenomes reveal the significant enrichment of KEGG pathways in secretors and non-secretor individuals.
(a) Distribution of bacterial genes in SeSe, Sese and sese individuals. The proportions of individuals having a given number of genes
are shown. (b) Communities clustered using PCoA of the Bray–Curtis distance matrix. Each colored point corresponds to a sample.
The clustering of SeSe was significant compared with both Sese and sese individuals (Adonis test, P¼ 0.004 and 0.004, respectively).
(c) Relative abundance of KEGG metabolic pathways in microbiome samples was colored by secretor status. Only the 13 pathways
showing concordant alterations in both human and murine data sets were plotted.
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imputed microbial metagenomic functions in
humans and mice, notably in reduced amino-acid
synthesis capabilities.

FMCs associated with non-secretor status
It is well understood that even healthy individuals
differ remarkably in their fecal and mucosal surface
gut microbial composition, especially at the genus
and species level. Mucosal microbiota can be further
assessed for functional relatedness based on their
co-occurrence patterns (Faust et al., 2012; Koren
et al., 2013). To determine whether such ecological
structures can be observed in this data set, we
developed a methodology to infer microbial
co-occurrence networks (see Materials and meth-
ods). Nodes (OTUs) of these networks were grouped
based on their topological overlaps using hierarch-
ical clustering. Using this approach, six modules,
ranging from 39 to 97 OTUs, were identified
(Supplementary Figure S8). These modules of OTUs
represent putatively key ecological features, which
we term as functional microbial communities
(FMCs). Multi-dimensional scaling was used to
depict module structure and network connections
(Figure 2a). Phylogenetically related OTUs were
clustered into the same FMC, presumably because
preferences for ecological niche are more likely to be
shared between more closely related microbes.
However, each FMC also included phylogenetically
distinct OTUs from different phyla, suggesting that
in addition to phylogenetic relatedness the forma-
tion of FMC depended upon additional ecological
affinities, which could range from syntrophic
dependences to convergent functionality between
distinct phylotypes (Supplementary Data set S4).

The ‘abundance’ of each FMC can be quantified
by defining the OTU abundance profiles of each
FMC (its module eigenvector; defined in Material

and methods). One can thus correlate the abundance
of the FMCs with the metadata, including host
genotype, disease phenotype, age and so on. When
using an additive genetic model, the abundances of
turquoise and blue FMCs significantly associated
with the copy number of the FUT2 loss-of-function
allele reciprocally (P¼ 0.04 and 0.05, respectively,
with rs516246 by Pearson correlation) (Figure 2b).
This observation was concordant with results at the
individual OTU level: when examining the member-
ship of the FMCs, we found that 12 of the 19 OTUs
enriched in SeSe individuals were assigned to the
blue FMC. Gender was another subject phenotype
that significantly associated with microbial compo-
sition: the turquoise (P¼ 0.004, Pearson correlation)
FMC was enriched in females, whereas the blue and
red FMCs (P¼ 0.04 and 0.006, respectively, Pearson
correlation) were more abundant in males. The
gender effect on intestinal microbiome has also been
reported previously in humans and murine model
(Mueller et al., 2006; Markle et al., 2013). Because of
the difference of male/female ratio in SeSe, Sese and
sese individuals (Supplementary Table S1), the
gender effect could potentially contribute to the
association of turquoise and blue FMCs with FUT2
genotype.

To determine whether these co-occurring micro-
bial communities represented distinct functional
units at the mucosal surface, we profiled the
metabolic capabilities of FMCs using the approx-
imate gene contents imputed previously. After
aggregating the individual inferred genomes accord-
ing to module membership, the relative abundances
of metabolic pathways in each FMC were
re-constructed. The functional profiles of FMCs
were highly variable (Figure 3). The pathways
associated with FUT2 clustered into two groups
that were over-represented in the FUT2 loss-of-
function allele-associated turquoise FMC and

Figure 2 FMCs associated with non-secretor status. (a) Classical multi-dimensional scaling plot in which OTUs in each FMC
represented by colored dots tend to form distinct clusters. (b) FMC-trait correlations and P values. Each cell reports the Pearson
correlation coefficient (and P-value) derived from correlating FMC eigenvectors (rows) to traits (columns). For the association with non-
secretor status, the SeSe and Sese individuals were grouped together as secretor. For the association with FUT2 genotype (rs516246),
additive genetic model was used. The table was color-coded by correlation according to the color legend.
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functional allele-associated blue FMC, respectively.
Moreover, the pathways enriched in SeSe
individuals tended to cluster into amino-acid
metabolism class and cofactors and vitamins meta-
bolism class, whereas the pathways enriched in Sese
and sese individuals highlighted amino-acid meta-
bolism, lipid metabolism and biosynthesis of
secondary metabolites (Figure 3). These metabolically
specialized microbial communities were therefore

responsible for the imputed metagenomic altera-
tions associated with FUT2 polymorphism.

Non-secretor-associated metagenomic changes
reflected by metabolomic and proteomic profiling
To determine whether the imputed metagenomic
alterations associated with FUT2 polymorphism
correlate with changes in metabolic activities of
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mucosal microbiota, we profiled the soluble meta-
bolites of the same lavage samples using Q-TOF MS.
The analysis generated a rich metabolomic data set
consisting of 649 and 576 spectral features in the
cecum and sigmoid regions, respectively. Putative
IDs were assigned to 372 ions by comparing their
m/z values to those available in online databanks
using a predefined mass error window of 20 p.p.m.
The putative IDs were then used to map out the ions
to various metabolomic pathways in the KEGG data
set. In accord with our previous study,B50% of all
metabolites were located at the terminal end of
metabolic pathways, suggesting enrichment for end-
products (McHardy et al., 2013). In the cecum, 48
metabolites were mapped to the 13 KEGG pathways
associated with non-secretor individuals in the
human and murine data sets and were present
in490% of the samples. Of these, 13 (27.1%) were
differentially abundant among secretors (SeSe and
Sese) and non-secretors (sese) (ANOVA, FDR
qo0.25). In the sigmoid, 30 metabolites were
mapped to the non-secretor-associated pathways; 4
(13.3%) were differentially abundant (ANOVA, FDR
qo0.25; Figure 4a and Supplementary Data set S5).

A less stringent q-value, up to 0.25, was used to
avoid missing significant associations, as shown in
recent comparable study designs (Wu et al., 2011;
Morgan et al., 2012). When using more stringent
q-value threshold (FDR q-valueo0.1), these meta-
bolites did not show significant association, which
is comparable with the results from study with
similar design (Wu et al., 2011). Thus, differences
in imputed microbial metagenome content corre-
sponded to abundances of metabolic end-products
directly detected in the same samples.

To determine how the host reacted to the changes
of the functional state of the microbiota, we also
profiled the proteomic features of the same samples
using MALDI-TOF MS. We focused our analysis on
peaks of human origin. Of the 453 peaks included,
the abundances of 16 (3.5%) were significantly
different among secretors and non-secretors
(ANOVA, FDR qo0.25). Although only 17 (3.8%)
molecular features could be identified, we found
that the expression levels of human neutrophil
peptides 1 and 2 (HNP-1 and -2) were significantly
higher in non-secretors, consistent with a sub-
clinical inflammatory state at the mucosal surface

Figure 4 Meta-metabolomic and meta-proteomic features that differentiate secretors and non-secretors. Relative abundance of
meta-metabolomic (a) and meta-proteomic (b) features in lavage samples is colored by secretor status.
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(Figure 4b). This difference could be driven by one
particular sese sample that had high expression of
HNP-1 and -2 relative to the other samples
(Figure 4b). To exclude such possibility, we repeated
the analysis excluding this sample, and found that
the levels of HNP1 and HNP2 were still significantly
higher in non-secretors based on nominal P-values
(ANOVA, nominal P¼ 0.007 and 0.047, respec-
tively), although FDR q-values were40.25 (FDR
q¼ 0.27 and 0.49, respectively). Our clinical records
did not indicate that this individual had gastro-
intestinal symptoms or chronic inflammation in the
intestine at the time of sampling. These data suggest
that the non-secretor state of the mucosa, via
alteration of the mucosal surface ecosystem, changes
the inflammatory state of the human intestinal
mucosa.

Discussion

We combined 16S rRNA gene sequencing, metagen-
ome imputation, meta-metabolomic and meta-
proteomic profiling to delineate the integrated
landscape of the mucosal surface ecosystem. The
phylogenetic diversity and composition of intestinal
mucosal microbiota in non-secretor individuals
were significantly different from that of secretors.
Compared with SeSe, the metabolic functions
encoded and expressed by the gut microbiome in
non-secretors were enriched for carbohydrate and
lipid metabolism, cofactors and vitamins metabo-
lism and glycan biosynthesis and metabolism and
depleted for seven pathways related to amino-acid
metabolism. These alterations in humans were
highly consistent with analogous changes in the
murine genetic counterpart. Changes in the imputed
metagenomes were reflected by concordant metabo-
lite pools as determined by meta-metabolomic
assays, providing validation for certain imputed
metagenomic changes as functionally consequential.
Moreover, these microbial functional changes were
accompanied by sub-clinical intestinal inflamma-
tion. FUT2 therefore appears to have a role in
shaping the functional state of the mucosal surface
by affecting not only microbial composition but also
the resulting functional state of the microbiota at the
human intestinal mucosal surface.

It was surprising that difference with the SeSe
group were in several cases (for example, alpha-
diversity) greater in the Sese rather than in the sese
group. This raises two issues. One is the extent of
glycan difference produced by haploinsufficiency.
As there was a strong haploinsufficiency phenotype
in all the facets of this study, we surmise that
a substantial glycan change is produced by
haploinsufficiency. However, to our knowledge,
the glycan profile in heterozygous individuals has
not been well described in the literature. The other
issue is why the Sese group had a larger and
more significant difference than the sese group.

One possible explanation is that the inter-individual
variation of gut microbial phylogenetic composition
is inherently large (Human Microbiome Project C,
2012; Yatsunenko et al., 2012). In this context, it is
notable that the sizes of the test groups were modest
(9 for sese, 18 for Sese). It is possible that the
particularly small size of the sese group made it
prone to outliers and potentially underpowered for
establishing mean phenotypes and robust statistical
comparisons (for example, the 95% confidence
interval for alpha-diversity was larger for the sese
(4.4) than for the Sese (1.8) group).

The imputed metagenome represents an accurate
but approximate inference of the reference microbial
genomes currently available. Potential bias may
result from unmappable 16S rRNA gene reads and
lack of sufficient reference genomes. After the
reference-based OTU picking, 97.5% of the total
reads were successfully mapped to the reference
Greengenes database. The 2.5% unmappable 16S
rRNA gene reads might cause the loss of metage-
nomic content that can be captured by shot-gun
sequencing. Also, only the 2590 microbial genomes
that had identifiers in the Greengenes reference tree
were used as the reference to predict unknown
genomes. Despite these bias and limitations,
PICRUSt predictions usually reach high agreement
with metagenomically measured gene content
(Spearman r¼ 0.8–0.9) (Langille et al., 2013).
In this study, the findings of imputed metagenomic
analysis in human subjects were validated by
metabolomic and proteomic data as well as by
comparison to an independent 16S rRNA gene data
set from humanized FUT2� /� mice. In the future,
adding meta-transcriptomic data will further enrich
our understanding of microbial functional capability
at any given time.

Inconsistencies of FUT2-associated imputed
metagenomic changes were also observed between
human and murine data sets. In the humanized
mouse gut microbiota, there are changes of micro-
bial compositions as compared with the donor
(Turnbaugh et al., 2009b). The fecal sample used
for humanization was from only one healthy donor,
which might cause inherent bias due to the limited
sample size. Also, taxonomic biases between the
two different 16S rRNA gene data sets may exist due
to different PCR primer sequences, amplicon lengths
and sequencing technologies (Claesson et al., 2010).

One of the key drivers of gut microbiota composi-
tion and function is the type and quantity of
complex carbohydrates, which are typically derived
from either diet or host mucus (Wu et al., 2011;
Koropatkin et al., 2012). These polysaccharides
serve as a primary metabolic input for the abundant
carbohydrate-fermenting bacteria within the micro-
biota (Martens et al., 2011). However, different
microbes within the gut are differentially endowed
with abilities to use specific types of glycans
(Sonnenburg et al., 2010), and so differences in
carbohydrate availability, such as the presence or
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absence of fucose in mucosal glycans, translate into
selective and regulatory events that result in discrete
alterations in the microbiota’s functional properties
(Kashyap et al., 2013). Individual members of the
microbiota can alter gene expression to accommo-
date the absence of fucose, while other members
may be lost, and others recruited (Kashyap et al.,
2013). Additionally a change in carbohydrate
utilization by relatively few members can cascade
into ecosystem-wide alterations, given the inter-
connectedness of metabolic functions within the
microbiome. Fucose processing by a gut-resident
symbiont allows expansion of pathogenic species,
such as Salmonella typhimurium. Similarly,
increased sialic acid release by certain bacterial
species (Bacteroides thetaiotaomicron) allows
expansion of Clostridium difficile (Ng et al., 2013).
Differences in host glycan fucosylation result in
distinct microbial ecosystems at the mucosal inter-
face, the compositions and metabolic activities of
which are likely precursors and predictors of
ensuing disease phenotypes. This concept has been
validated by the upstream role of microbial fucose
processing for the expansion of the enteric pathogen
S. typhimurium (Ng et al., 2013).

Among the phylotypes that are depleted in
Sese and sese compared with SeSe individuals
(Supplementary Data set S1), Roseburia and
Faecalibacterium are both short-chain fatty acid-
producing bacteria (Scheppach, 1994; Wong et al.,
2006) and reported to be anti-inflammatory (Sokol
et al., 2008; Atarashi et al., 2011). Moreover,
depletion of Firmicutes and expansion of Proteo-
bacteria members are also characteristic of changes
associated with the IBD microbiome (Frank et al.,
2007; Sokol and Seksik, 2010). Both Sese and sese
individuals harbored 15% fewer microbial genes on
average than SeSe individuals (Figure 1a). The
lower metagenome diversity is an unfavorable
feature for the host, which has also been observed
in IBD (Qin et al., 2010) and obesity (Le Chatelier
et al., 2013). Among the pathways that were
consistently depleted or enriched in Sese and sese
individuals, the increase in glutathione metabolism
and decrease in amino-acid biosynthesis (particu-
larly lysine) pathways have been reported as a
feature of the metagenome in IBD patients (Morgan
et al., 2012). These data indicated that the non-
secretor-associated changes of microbial composition
and imputed metagenomic functions are also
characteristics of other chronic inflammatory
conditions and therefore are unfavorable for the host.

FUT2� /� mice have a marked alteration in gastric
mucosa glycosylation, characterized by diminished
expression of alpha(1,2)fucosylated structures
(Magalhaes et al., 2009). As gut microbes have
developed the ability to degrade host-derived
glycans (Katayama et al., 2004; Sonnenburg et al.,
2005), the deprivation of terminal fucosylation may
affect the metabolic activity of the gut microbiota
and thus its fermentation products potentially

available to the host. Recent work reported that
enterohemorrhagic Escherichia coli encodes a two-
component system, termed FusKR, which responds
to fucose and controls metabolic gene expression
(Pacheco et al., 2012). The imputed metagenomic
changes in non-secretors highlighted the depletion
of indispensable amino-acid biosynthesis. This
group of metagenomic functions complements that
encoded by the host genome (Metges, 2000; Gill
et al., 2006; Qin et al., 2010). In the IBD metagen-
ome, amino-acid biosynthesis and carbohydrate
metabolism are reduced in favor of nutrient uptake
(Morgan et al., 2012). Such changes might reflect
compensation by the microbiota for the lower
availability of carbon sources. Amino-acid starva-
tion can lead to host stress response and the
induction of autophagy of intestinal epithelial cells
(Tattoli et al., 2012), which may increase the risk of
IBD. Although the current imputed metagenomic
analysis is limited to the KEGG pathway level,
further insights could be gained by extending the
analysis to individual KEGG module or enzyme. It
would be helpful to further identify the individual
genes or reactions that are differentially abundant in
these pathways, which would serve as potential
candidates for therapeutic manipulation.

Low richness of gut microbiota is a well-known
feature of patients with IBD (Manichanh et al., 2006;
Lepage et al., 2011), and other chronic conditions
such as obesity (Turnbaugh et al., 2009a), and of
elderly patients with inflammation (Claesson et al.,
2012). A recent study defined two groups of
individuals who differed by the number of gut
microbial gene as low gene count (LGC) and high
gene count (HGC) (Le Chatelier et al., 2013). LGC
individuals exhibited an imbalance of pro- and
anti-inflammatory bacterial species and evidence
of low-grade inflammation. We have shown that
both Sese and sese individuals harbored 15% fewer
microbial genes on average than SeSe individuals
and therefore exhibited low metagenomic richness.
Similarly, in Sese and sese individuals, genera
associated with LGC individuals, including
Faecalibacterium and Coprococcus, were also more
dominant. Moreover, the sub-clinical inflammatory
state at the mucosal surface was reflected by the
higher expression levels of HNP-1 and -2 in
non-secretors.

The data presented here supports the hypothesis
that the FUT2 loss-of-function allele increased the
risk of CD by shaping the functional states of
mucosal microbiota. Meta-analysis of genome-wide
association studies has increased the number of
confirmed IBD (both CD and ulcerative colitis)
susceptibility loci to 167 (Jostins et al., 2012),
indicating that IBD is biologically heterogeneous.
The analysis presented in this study focused on
individuals without clinical symptoms. It will be
important to extend the same analysis to patients
with CD to determine to what extent the changes we
present are recapitulated in the disease setting.
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In addition to FUT2, other risk genes have also been
shown to affect the gut microbial composition, such
as NOD2 (Petnicki-Ocwieja et al., 2009; Frank et al.,
2011) and several defensin genes (Ivanov et al.,
2008; Salzman et al., 2010). It is currently unclear
whether the microbiota associated with genes of
similar functions has the same compositional and
functional signatures. The stratification of gut
microbiome by host genetics is a crucial step for
elucidating the pathogenic mechanism of IBD as well
as the design of personalized therapeutic interventions.

To achieve unprecedented understanding of
the ecological structures and biomolecular activities
of the gut microbiome, it is necessary to extend
the analysis to multiple levels of biological
organization—genome content, gene expression,
protein expression and metabolism (Raes and Bork,
2008; Nicholson et al., 2012). In this study, we
used multiple ’omic approaches to disentangle
the complex host–microbial metabolic interplay.
Meta-proteomic analysis in this case focused on
the host side, but metabolomics could be extended
to incorporate richer microbial analysis in the
future. Although only a limited number of integra-
tive ‘omics profiles of the gut microbiota currently
exist (Erickson et al., 2012; Perez-Cobas et al., 2012),
multi’omic studies have shown great potential in
providing a holistic picture of the metabolic status
of the gut microbiota and the host response to
functional changes.
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