REVIEW

Epithelial glycosylation in gut homeostasis and inflammation

Yoshiyuki Goto^{1,2}, Satoshi Uematsu^{2,3} & Hiroshi Kiyono^{2,4,5}

Intestinal epithelial cells apically express glycans, especially α 1,2-fucosyl linkages, which work as a biological interface for the host-microbe interaction. Emerging studies have shown that epithelial α 1,2-fucosylation is regulated by microbes and by group 3 innate lymphoid cells (ILC3s). Dysregulation of the gene (*FUT2*) encoding fucosyltransferase 2, an enzyme governing epithelial α 1,2-fucosylation, is associated with various human disorders, including infection and chronic inflammatory diseases. This suggests a critical role for an interaction between microbes, epithelial cells and ILC3s mediated via glycan residues. In this Review, using α 1,2-fucose and *Fut2* gene expression as an example, we describe how epithelial glycosylation is controlled by immune cells and luminal microbes. We also address the pathophysiological contribution of epithelial α 1,2-fucosylation to pathogenic and commensal microbes as well as the potential of α 1,2-fucose and its regulatory pathway as previously unexploited targets in the development of new therapeutic approaches for human diseases.

The intestine is a unique organ that is constitutively exposed to luminal environmental antigens, including innumerable pathogenic and nonpathogenic microorganisms. Hosts have developed a multilayered biological system for the creation and maintenance of an intestinal homeostatic environment and the establishment of bidirectional crosstalk between the host and microbial symbionts. The host is equipped with a first line of defense, consisting of the intestinal epithelial and mucus layers at the surface of gastrointestinal tract, to restrict undesired intrusion of luminal microorganisms. The intestinal epithelium consists of a variety of epithelial cells (ECs), including enterocytes, goblet cells, enteroendocrine cells, Paneth cells and M cells, connected by tight junctions; these function as a physical and cellular barrier against external antigens^{1,2}. In addition, a mucus layer produced by goblet cells covers the surface of intestinal ECs and is important in the containment of microorganisms in the lumen³. ECs, especially Paneth cells, also yield antimicrobial peptides such as α -defensin and RegIIIy for protection against microbial infection and for spatiotemporal regulation of colonization by commensal bacteria⁴⁻⁷. As a second barrier system, the gut innate and acquired immune systems distinguish between beneficial and pathological antigens, exerting immunological functions to tolerate or eliminate these, respectively⁸.

These first and second barriers operate cooperatively (not independently) to eradicate harmful antigens, while establishing symbiotic conditions in regard to nonpathogenic microbes. Bidirectional interactions between intestinal ECs and immune cells can shape the gut immune system⁹. For instance, ECs help induce T helper 17 (T_H17) cell differentiation by producing serum amyloid A (SAA)^{10–12}, while intestinal T_H17 cells produce interleukin 22 (IL-22) and IL-17A, leading to the production of antimicrobial molecules from ECs. This interplay between ECs and T_H17 cells is an example of coordinated cross-communication to create a protective platform against pathogenic bacterial infection¹².

In contrast to the fate of pathogens, which induce transient inflammatory immune responses, commensal microorganisms on the luminal side of epithelial surfaces constitutively educate the host mucosal immune system without producing any pathological symptoms^{13,14}. Therefore, how the host achieves a divergent barrier system, allowing a symbiotic relationship with commensals and a protective platform against pathogens, is an important question in regard to our understanding of host-microbe communication. Recent reports have shown that intestinal epithelial glycans play a crucial role in the host-microbe interplay and that their glycosylation is modulated by microbial stimulation and the gut immune system^{15–17}. Notably, epithelial glycans contribute to the maintenance of gut microbiota homeostasis and are linked to the virulence of selected pathogenic bacteria and viruses, serving as the entry receptors for bacterial toxins and viral particles¹⁸⁻²⁰. These findings shed light on the important roles of epithelial glycans and glycosylation as communication tools and immunological factors for the control of luminal microbes. Here, we review the physiological and immunological contributions of intestinal epithelial glycans, especially α 1,2-fucose, as the biological and interactive molecule for the host-microbe crosscommunication. Interestingly, emerging findings have revealed a previously unknown mechanism of epithelial a1,2-fucosylation regulated by group 3 innate lymphoid cells (ILC3s) situated under the gut epithelium and by luminal commensal bacteria¹⁵. This interactive network system of mucosal immune cells, ECs and luminal microorganisms for the induction and regulation of epithelial glycosylation and subsequent

¹Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.²International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ³Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan. ⁴Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan. ⁵Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. Correspondence should be addressed to H.K. (kiyono@ims.u-tokyo.ac.jp).

Figure 1 Intestinal epithelia $\alpha_{1,2}$ -fucose synthesized by fucosyltransferases is a symbiotic molecule between host and microbes. (a) H type I and II antigens are synthesized by Fut1 and Fut2, respectively (denoted collectively as Fut1/2). (b) Fucose incorporated from extracellular spaces is converted into GDP-fucose in the cytosol. GDP-fucose is also produced from GDP-mannose. After GDP-fucose is incorporated into the Golgi apparatus, Fut2 mediates the decoration of peripheral terminal β -D-galactose on proteins and lipids with $\alpha_{1,2}$ -fucose. $\alpha_{1,2}$ -fucosylated proteins and lipids are subsequently transferred to the plasma membrane. Photo at top right shows whole-mount staining of murine ileal villi stained with the lectins UEA-1 and WGA. UEA-1 and WGA bind to $\alpha_{1,2}$ -fucose is incorporated by selected symbionts such as *Bacteroides*. *Bacteroides* have a set of genes that recycle host-derived L-fucose. L-Fucose is utilized to (1) synthesize fucosylated polysaccharides (PSA), (2) regulate gene expression through the fucose operon and (3) undergo catabolism for energy.

establishment of intestinal homeostasis represents a potentially attractive target for the development of new treatments for host infectious and inflammatory diseases.

Epithelial sugar chains mediate host-microbe communication

In living cells, cell surface proteins and lipids are decorated by polysaccharides, which are processed by enzymes responsible for the addition of specific sugar residues to the substrates^{21,22}. Carbohydrate moieties expressed on cells have diverse and useful biochemical properties, such as molecular trafficking and clearance, cell adhesion, immune surveillance, hematopoiesis, inflammation, inter- and intracellular signaling, receptor activation and endocytosis^{21,22}. Unique carbohydrate moieties expressed in various cell subsets confer different functional properties upon each cell type in cell-specific, site-specific and protein-specific manners²³. Glycans expressed on and secreted from the apical surfaces of mucosal ECs possess unique physiological, immunological and functional characteristics in line with their specific distribution in tissues, where they are in continuous contact with surrounding environmental antigens. One important characteristic of the mucosal epithelial glycan system is that its glycosylation is pliably and adaptively operated in response to environmental stimuli²⁴. In fact, carbohydrate moieties expressed on the apical surfaces of ECs are constantly renewed, turning over approximately every 6-12 h in the murine jejunum²⁵. Membrane-bound glycoproteins and glycolipids on mucosal ECs function as important communication tools between the host and luminal microbes. For example, enteric bacteria such as pathogenic Escherichia coli and Salmonella typhimurium bind to glycoprotein 2 (GP2), a 75-kDa glycosylphosphatidylinositol (GPI)-anchored protein²⁶

that is specifically expressed on the apical membrane of M cells via the bacterial type I pili of these pathogens as a means of invasive entry thorough the host intestinal epithelium²⁷. A recent study has shown that *Vibrio parahaemolyticus* infects host cells by using its type III secretion systems I and II to target epithelial-surface-associated biotransformation molecules, including sulfation and fucosylated glycans, respectively²⁸. A microbial toxin produced by pathogenic bacteria targets glycolipids on intestinal ECs¹⁸. For instance, cholera toxin, produced by *Vibrio cholerae*, binds to GM1 ganglioside on intestinal ECs¹⁸. In addition to bacteria, enteric viruses such as norovirus (Norwalk virus) bind to α 1,2-fucose residues via histo-blood-group antigens expressed on intestinal ECs²⁰. Therefore, intestinal epithelial glycans are critical in the interplay between host and luminal microorganisms.

Epithelial a1,2-fucose governs host-microbe mutualism

Fucose is a deoxyhexose that is one of major components of N- and O-linked glycans²⁹. Fucosylated sugar chains are synthesized by fucosyltransferases (Fut)³⁰. So far, 13 fucosyltransferase genes have been identified in the human genome³⁰. In human and murine intestine, the *Fut1* and *Fut2* genes, encoded on chromosome 19 and 7, respectively, are expressed in ECs^{31,32}. FUT1 and FUT2 mediate the addition of L-fucose via an α 1–2 linkage to the terminal β -D-galactose residues of mucosal glycans including type 1 or 2 *N*-acetyllactosamine, subsequently producing H type 1 or type 2 antigens of ABO histo-blood group, respectively^{33,34} (**Fig. 1a**). It has been reported that ABO histo-blood-group antigens governed by FUT2 are secreted into the oral cavity and intestinal lumen and determine secretor status in humans³⁵; thus, *FUT2* is

Figure 2 Intestinal epithelial α1,2-fucosylation is regulated by bacterial signals and immune cells. (a) Commensal bacteria, especially segmented filamentous bacteria (SFB) and *Bacteroides*, induce epithelial Fut2 and α1,2-fucose expression. IL-22 and lymphotoxin (LT) from group 3 innate lymphoid cells (ILC3s) mediate SFB-induced epithelial α1,2-fucosylation. (b) Pathogenic bacteria such as *S. typhimurium, C. rodentium* and *H. bilis* have the potential to induce epithelial Fut2 and α1,2-fucose. ILC3s and IL-22 are critical for epithelial α1,2-fucose induced by *S. typhimurium* and *C. rodentium*.
(c) Bacterial components such as lipopolysaccharide (LPS) stimulate gut dendritic cells (DCs) via the TLR–Myd88 pathway. IL-23 produced by gut dendritic cells induces IL-22 production from ILC3s, subsequently promoting epithelial Fut2 and α1,2-fucosylation.

known as a secretor gene^{33,36}, FUT2 transfers fucose from the activated monomeric form, guanosine diphosphate (GDP)-fucose (**Fig. 1b**). GDP-fucose is synthesized from GDP-mannose and fucose incorporated from extracellular milieu or released from fucosylated glycan resides in lyso-somes (**Fig. 1b**)³⁷. GDP-fucose is catabolized and transferred to acceptor sugar substrates on glycoproteins and glycolipids in the Golgi apparatus (**Fig. 1b**). One study showed that *Fut1* is ubiquitously expressed, whereas *Fut2* is preferentially expressed in ECs of the oral cavity and gastrointestinal and urogenital tracts³². Recent reports also have demonstrated specific patterns of *Fut1* and *Fut2* expression in the epithelial subsets of gastrointestinal compartment. α 1,2-Fucose on enterocytes and goblet cells is specifically regulated by Fut2, while Fut1 regulates α 1,2-fucose on M cells located in the dome epithelium of Peyer's patches^{15,24}, α 1,2-Fucose on Paneth cells is detected even in Fut2-deficient mice, suggesting that its expression on these cells is restricted by Fut1 (ref. 15).

 α 1,2-Fucose peripherally decorating glycans is expressed both on the apical surface of ECs (Fig. 1b) and in luminal compartments as secretory glycosylated antigens¹⁵. This unique expression pattern provides the opportunity for α 1,2-fucose to contact and interact with luminal microorganisms, especially commensal bacteria. Interestingly, several symbionts in the gut possess fucose-salvage enzymatic pathways that enable them to recycle host-derived fucosylated glycans³⁸. The symbionts Bacteroides thetaiotaomicron and Bacteroides fragilis produce fucosidase, which cleaves α 1,2-fucose from ECs; the symbionts then incorporate the liberated L-fucose³⁸ (Fig. 1c). Incorporated L-fucose is catabolized by a set of fucose-degradation enzymes³⁸; recycled as fucosylated capsular polysaccharides, which are components of the bacterial cell wall³⁹; and used in the regulation of fucose-operon genes⁴⁰ (Fig. 1c). Epithelial α1,2-fucose allows wild-type *B. fragilis* to colonize with competitive advantages over mutants with defective enzymes for fucosylated polysaccharide synthesis³⁹, suggesting that epithelial α 1,2-fucose has an important role in colonization by symbionts (Fig. 1c). Given these findings, it is not surprising that Fut2-deficient mice have abnormal commensal microflora (called dysbiosis) and metabolites derived from commensals^{41,42}, which may exacerbate intestinal inflammation induced by *Citrobacter rodentium*¹⁶. An important change in our understanding of commensal microbes in Fut2-deficient mice is the reduction in the size of an unclassified genus within the order *Clostridiales* and the expansion of *Parabacteroides, Eubacterium, Parasutterella, Bacteroides* and family *Lachnospiraceae*⁴¹. One of the major roles of α 1,2-fucose is the maintenance of commensal symbionts and the intestinal microenvironment. In addition, mucus L-fucose liberated from ECs by *B. thetaiotaomicron*-derived fucosidase represses the expression of enterohemorrhagic *E. coli* (EHEC) virulence genes through the activation of the fucose sensor FusKR⁴³. Therefore, epithelial α 1,2-fucose governed by Fut2 plays pivotal roles in the modulation of luminal pathogenic and nonpathogenic bacteria.

Microbial stimuli induce epithelial a1,2-fucose expression

Several recent studies have explored the inductive mechanism of Fut2 and α 1,2-fucose in intestinal ECs. Various environmental stimuli, such as oral administration of chemical mediators including cycloheximide, dextran sodium sulfate and nonsteroidal anti-inflammatory drugs, induce Fut2 and α 1,2-fucose expression on ECs^{24,44}. These chemicals are inflammatory agents and provoke dysfunction of the epithelial barrier, suggesting that such danger signals may alter epithelial physiology, thereby triggering the expression of epithelial Fut2 and α 1,2-fucose. Indeed, Na⁺-H⁺-exchanger isoform 3 (NHE3) null mice have ectopic epithelial α 1,2-fucosylation, leading to overgrowth of *B. thetaiotaomicron*⁴⁵. This finding indicates that dysregulation of epithelial ion transport induces epithelial expression of α 1,2-fucose, supporting the notion that disruption of epithelial homeostasis triggers epithelial α 1,2fucosylation.

Colonization of host gut by commensal bacteria initiates the process of epithelial α 1,2-fucosylation (**Fig. 2a**). Germ-free mice show impaired α 1,2-fucose expression on intestinal ECs, but this is restored

Figure 3 Biological trade-off mediated by epithelial α 1,2-fucose. (a) Epithelial α 1,2-fucose creates a symbiotic environment for the host and commensal bacteria. Commensal bacteria, especially *Bacteroides*, cleave epithelial α 1,2-fucose via fucosidases. Liberated L-fucose is incorporated and catabolized by these symbionts. (b) Epithelial α 1,2-fucose creates a protective platform against pathogenic bacterial infection. Epithelial α 1,2-fucose inhibits infection by *S. typhimurium*, *C. rodentium* and *C. albicans*. (c) Pathogenic microorganisms hijack epithelial α 1,2-fucose to achieve colonization and infection of intestinal tissues. α 1,2-Fucose is important for the adhesion of *H. pylori* to host gastric ECs. Norovirus and rotavirus attach to α 1,2-fucose on intestinal ECs to infect host tissues.

by colonization with commensal microbes^{46,47}. Interestingly, the expression patterns of Fut2 and a1,2-fucose on intestinal ECs is spatiotemporally regulated in a commensal-bacteria-dependent manner. α 1,2-Fucose expression is predominantly observed in the ileum, but only a few cells express α 1,2-fucose in the duodenum and jejunum¹⁵. This region-specific epithelial α 1,2-fucose is initiated immediately after weaning⁴⁶. These findings suggest a possibility that specific commensals colonizing a restricted region of the gut are responsible for the induction of α 1,2-fucose. Indeed, commensal bacteria include epithelial α 1,2-fucose-inducing and non- α 1,2-fucose-inducing bacteria. B. thetaiotaomicron, B. fragilis and segmented filamentous bacteria (SFB) but not Lactobacillus murinus, Bifidobacterium and Peptostreptococcus induce epithelial α 1,2-fucose expression^{15,46,48,49}. Bacteroides and SFB preferentially colonize the lower parts of gastrointestinal tracts after weaning^{11,15,46}. Furthermore, SFB-deficient mice are defective in ileal epithelial fucosylation, suggesting that SFB are major players in ileal epithelial α 1,2-fucosylation in the normal state^{15,17}. In addition to these α 1,2-fucose-inducing commensal bacteria, pathogenic bacteria such as Salmonella typhimurium and Helicobacter bilis have been reported to induce epithelial Fut2 expression and α 1,2-fucosylation (Fig. 2b)^{15,50}. In addition to these bacteria, C. rodentium induce epithelial Fut2 and α 1,2-fucosylation in the cecum but not in the small intestine^{16,17}. The details of the mechanism whereby C. rodentium can induce epithelial α 1,2-fucosylation in the cecum but not small intestine are still unknown. It is interesting to speculate that DC- and ILC3-mediated 'crossbarrier' signals of bacteria specifically occurring in the cecum, but not the small intestine, may contribute to the induction of α 1,2-fucosylation. Although it is still unclear what kinds of bacterial molecules are essential for the induction of epithelial α 1,2-fucosylation, *Bacteroides* mutants with defects in genes associated with the fucose metabolic pathway fail to induce epithelial Fut2 expression, suggesting that the bacterial fucose metabolic pathway regulates the expression of genes involved in the induction of epithelial α 1,2-fucose production^{40,49}. In addition, the Toll-like receptor (TLR) pathway is involved in α1,2-fucose induction, because the administration of TLR agonists (for example, lipopolysaccharides) induces epithelial a1,2-fucose in a MyD88-dependent manner¹⁷ (Fig. 2c). However, it is still unknown why and how certain

commensals and pathogens induce epithelial α 1,2-fucosylation. Because SFB and pathogenic bacteria commonly have unique characteristics, in that they tightly attach to ECs and modulate epithelial physiology and gene expression^{11,13}, physical stimulation (such as bacterial attachment) combined with bacterial ligand signals may be required for the expression of epithelial Fut2 and α 1,2-fucose. Thus, other commensals that cannot attach to ECs fail to the induction of epithelial α 1,2-fucosylation.

Mucosal immune cells regulate epithelial a1,2-fucosylation

In addition to the commensal and pathogenic bacteria, recent studies have revealed that mucosal immune cells are critical biological elements for the induction of epithelial α1,2-fucose (Fig. 2). Innatetype mucosal immune cells, especially ILC3s, are required for the induction of epithelial α 1,2-fucose^{15,17} (Fig. 2). Intestinal ECs specifically express IL-22 receptor; through this means, IL-22 produced by ILC3s provides activation signals to ECs via the IL-22R-STAT3 pathway, leading to the subsequent induction of Fut2 and other defense genes (such as RegIII γ (also known as REG3G) and SAA)¹⁶. In addition to IL-22-mediated α 1,2-fucosylation, lymphotoxin (LT) produced by ILC3s is also involved¹⁵ (Fig. 2a). Although it is still unknown how LT produced by ILC3s induces epithelial α 1,2-fucose production, other studies suggest that LT promotes IL-23 production by dendritic cells (DCs), regulating subsequent IL-22 production from ILC3s (refs. 51,52). This DC-ILC3 interaction mediated by IL-23 and LT may be crucial for epithelial α 1,2-fucosylation. It will also be important to identify whether IL-22-producing ILC3 subsets express LT in future studies.

Inasmuch as both luminal microbiota and innate immune cells induce epithelial α 1,2-fucose expression, the next obvious question is whether these two ecological elements cooperatively regulate the epithelial glycosylation system. In fact, commensal bacteria have been reported to induce IL-22 production from ILC3s through a process that is mediated by DCs^{10,17,53,54}. This mechanism of epithelial α 1,2-fucosylation may support the specificity of bacteria responsible for epithelial α 1,2fucosyation discussed above, because epithelial attachment by SFB and pathogenic bacteria is crucial for the induction of the gut immune system, including IL-22 expression by ILC3s¹¹.

Condition	Disease or pathology	Evaluation	Polymorphism(s)	Ref(s).
Inflammation	Crohn's disease	Susceptible	rs281379, rs601338, rs602662	69,70
	Chronic pancreatitis		_	71
	Primary sclerosing cholangitis		rs281379, rs601338, rs602662	72
	Acute uncomplicated pyelonephritis		_	73
	Type I diabetes		rs601338	74
	Psoriasis		rs1047781	75
	Behçet's disease		rs632111, rs601338	76
Infection	Candida albicans	Susceptible	_	61
	Neisseria meningitidis		-	59
	Streptococcus pneumoniae		_	59
	Haemophilus influenza		-	60
	Urinary tract infection		_	62
	Pathogenic Escherichia coli		-	63
	Bacteremia and infection after hematopoietic stem cell transplantation		rs601338	86
Infection	Helicobacter pylori	Resistant	rs601338	84,85
	Norovirus		rs601338	86,88
	Rotavirus		rs601338	87,88,89

Table 1 Effects of nonsense polymorphisms of the FUT2 gene on human pathophysiological conditions

In contrast to the role of innate immune cells in the induction of epithelial a1,2-fucosylation, acquired immune cells negatively regulate epithelial α 1,2-fucose and Fut2 expression⁵⁵. Indeed, a higher number of α 1,2-fucosyated ECs was observed in recombination-activating gene (Rag)-deficient mice lacking T and B cells than in wildtype mice¹⁵. Among acquired immune cells, IL-10-producing T cells, presumably regulatory T cells and/or Tr-1 cells, but not B cells and other T cell subsets have a critical role in the suppression of epithelial α1,2-fucosylation⁵⁵. In addition, augmented numbers of ILC3s and augmented expression of IL-22 by ILC3s have been observed in Ragdeficient mice, suggesting that T cells negatively regulate the number of ILC3s as well as IL-22 production⁵⁶. Thus, acquired immune cells, especially IL-10-producing T cells, appear to exert regulatory effects by competing for ILC3 niches and by producing inhibitory cytokines for epithelial α1,2-fucosylation. Although the physiological mechanism underlying the regulation of epithelial α 1,2-fucosylation by T cells is unknown, enhancement of epithelial a1,2-fucosylation in the absence of acquired immune cells may be a kind of 'compensatory' protective response and homeostatic adaptation against luminal microorganisms. Future studies should identify whether specific commensal bacteria and bacteria-derived molecules are involved in the T-cell-mediated downregulation as well as ILC3-mediated induction of epithelial a1,2fucosylation. What is evident, however, is that the gut immune system is a critical coordinator of epithelial α 1,2-fucosylation that creates homeostatic conditions to establish a cohabitation environment with commensal microorganisms (Fig. 2a).

Epithelial a1,2-fucose protects against pathogenic bacteria

Secretory and membrane-bound sugar structures cover the mucosal surfaces as an important component of the innate defense system that guards against undesired infection caused by pathogenic and opportunistic microorganisms^{3,15,16,57}. Epithelial α 1,2-fucose has inhibitory functions against various pathogen. As described above, epithelial α 1,2-fucose protect against *C. rodentium* infection by establishing a conventional commensal microbiota¹⁶ (**Fig. 3a**). Another pathogenic bacterium, *S. typhimurium*, can bind to epithelial α 1,2-fucose via its Std fimbriae⁵⁸. Interestingly, *S. typhimurium* more effectively infects Fut2-deficient mice, suggesting that epithelial α 1,2-fucose has a protective role against infection by *S. typhimurium*¹⁵ (**Fig. 3b**). Although

why *S. typhimurium* efficiently infects Fut2-deficient mice is still under investigation, dysbiosis caused by Fut2 deficiency may create an intestinal environment susceptible to *S. typhimurium* infection^{41,42}. Another possibility is that epithelial α 1,2-fucose may directly prevent *Salmonella* infection. Because α 1,2-fucose-containing carbohydrate moieties are secreted by goblet cells¹⁵, secreted α 1,2-fucose-containing glycans may interfere with the attachment of *S. typhimurium* to ECs, much as mucin prevents undesired access of bacteria to intestinal ECs³. In addition to bacteria, Fut2-deficient mice are susceptible to vaginal *Candida albicans* infection, suggesting that epithelial α 1,2-fucose may protect against pathogenic fungal infection⁵⁷ (**Fig. 3b**). Taken together, these results indicate that epithelial α 1,2-fucose has an important role in the establishment of a protective platform against pathogen infection.

In contrast, selected pathogens can take advantage of the expression of α 1,2-fucose on gastrointestinal tracts, using it as a means to gain EC entry and initiate infection⁵⁹. *Helicobacter pylori* produces the adhesin BabA, which binds to α 1,2-fucose expressed on gastric ECs⁶⁰ (**Fig. 3c**). Epithelial α 1,2-fucose may serve as an anchor for *H. pylori* infection, because the efficiency of *H. pylori* infection in the gastric mucosa is considerably lower in Fut2-deficient mice⁵⁹. Although pathogens that bind epithelial α 1,2-fucose often distress the host, α 1,2-fucose-containing glycans also have the potential to prevent bacterial infection by interfering with bacteria–EC binding. For example, α 1,2-fucose-containing milk effectively protects against infection with *Campylobacter jejuni*⁶¹. This may extend the role of α 1,2-fucosylated glycans as therapeutic targets for protection against pathogenic bacterial infection (**Fig. 3**).

FUT2 polymorphism is associated with human diseases

The expression and physiological roles of intestinal α 1,2-fucose on the host-microorganism interplay have also been investigated in humans⁶²⁻⁶⁶. Various polymorphisms of fucosyltransferase genes, especially *FUT2*, have distinct regional distributions in humans⁶⁷. For example, approximately 20% of Caucasians (defined as Europeans and Iranians) and Africans are homozygous for loss-of-function alleles of *FUT2* genes^{36,68,69}. Nonsense polymorphisms of the *FUT2* gene, for example 428G \rightarrow A (Trp143 \rightarrow stop), cause defects of intestinal α 1,2fucose, which are known as "non-secretor" phenotypes³⁵. Thus, nonsecretors are defective in H-type antigens consisting of α 1,2-fucosylated carbohydrate chains expressed on mucosal ECs and luminal fluids. Approximately 15% of Asians carry the $385A \rightarrow T$ (Ile120 \rightarrow Phe) mutation, a common missense polymorphism of Fut2 (refs. 70,71). Evidence from studies of human non-secretors have shown that epithelial α 1,2-fucose has multiple physiological functions, including not only communication with microbes but also maintenance of homeostasis of the intestinal and systemic compartments.

A recent genome-wide association study revealed that FUT2 nonsense polymorphisms in humans are associated with abnormal local and systemic physiological functions and diseases^{72–79}. The most important relationship is between FUT2 hypomorphs and Crohn's disease^{72,73} (Table 1). Consistent with the fact that commensal bacteria and the host immune system are tightly associated with development of inflammatory bowel disease (IBD, a category that includes Crohn's disease)⁸⁰, and several ILC3-related genes, such as IL23R, STAT3, LTA, LTB and CCR6, are Crohn's disease susceptibility genes⁷², FUT2 appears to be an important target gene for Crohn's disease. Interestingly, the incidence of Crohn's disease and FUT2 missense mutations reported in Japanese individuals are not correlated with those observed in Caucasians with FUT2 nonsense polymorphisms⁸¹. This discrepancy may be explained by the characteristics of Crohn's disease, which is caused by a combination of genetic background and environmental factors. Indeed, Fut2deficient mice do not spontaneously develop any inflammation in the normal state¹⁵.

In addition to being associated with Crohn's disease, FUT2 nonsense polymorphisms are risk factors for various pathological conditions, including acute and chronic inflammatory disorders such as type I diabetes⁷⁷, primary sclerosing cholangitis⁷⁵, psoriasis⁷⁸, chronic pancreatitis⁷⁴, acute uncomplicated pyelonephritis⁷⁶ and Behçet's disease⁷⁹ (Table 1). Thus, FUT2 nonsense polymorphisms are associated with diverse local and systemic disorders, although the detailed cellular and molecular mechanisms underlying the pathological process associated with FUT2 nonsense polymorphisms are still unknown. As in the case of Fut2-deficient mice, dysbiosis and dysfunction of metabolism are observed in human non-secretors^{82,83}. Indeed, non-secretors have aberrant gut microbiota, with a reduction of Bifidobacteria, which may predispose to the development of IBD⁸³. Such abnormal microbiota and metabolites in non-secretors possibly affect the promotion of a variety of local and systemic diseases^{42,82}. Notably, it has been reported that the colonization of the host by Bifidobacteria is aberrant in breastfed infants of non-secretor mothers⁸⁴. In addition, *Bifidobacteria* consume fucosylated glycans such as 2'-fucosyllactose, which is detected in the milk of secretors but not non-secretors⁸⁵. Therefore, FUT2 status may affect colonization of Bifidobacteria in infants through the breast milk⁸⁴. These results suggest that fucosylated glycans in breast milk, as well those that are membrane-bound and in intestinal fluids, contribute to the creation and maintenance of a homeostatic environment for gut microflora. Interestingly, non-secretors are susceptible to infection by pathogenic microbes such as pathogenic E. coli, Neisseria meningitidis, Haemophilus influenzae and C. albicans⁶²⁻⁶⁶ (Table 1). In addition, bacteremia has been found to occur in individuals with FUT2 nonsense polymorphism after allogeneic hematopoietic stem cell transplantation⁸⁶. These results emphasize the important role of epithelial FUT2 and a1,2-fucose to protection against pathogenic infection.

Although defects in epithelial FUT2 predispose individuals to several diseases, a high percentage of *FUT2* nonsense polymorphisms are evolutionarily maintained in the human genome^{36,67,69}. This evidence allows us to predict that *FUT2* inactivation confers beneficial effects on individuals. Indeed, infection with *H. pylori*, which binds to epithelial Lewis (b) (Le (b)) blood group antigen via BabA adhesin, is abrogated in non-secretors, in accordance with results from Fut2-deficient mice^{87,88}. In addition to bacterial infection, epithelial α 1,2-fucose also affects human viral infections. Because norovirus, especially GII.4, and the rotavirus P8 genotype bind to the histo-blood-group antigen α 1,2fucose-containing glycan, humans with nonsense polymorphisms of the *FUT2* gene are resistant to infection by these viruses^{89–92} (Fig. 3c). Augmented serum antibody titers against rotavirus are detected in secretors, supporting the importance of FUT2 and α 1,2-fucose in ECs as a target for rotavirus infection and subsequent immune responses including antibody production⁹³. Considering these findings together, expression of epithelial FUT2 and α 1,2-fucose appears to be an example of a biological trade-off system between host and microorganisms (**Table 1**). This biological trade-off seems to have evolved because of the interactive ecological network of the host immune system, commensals and pathogenic microorganisms in our intestines (**Fig. 3**).

Concluding remarks

The intestinal epithelial surface is the primary interface for the hostmicrobe interaction. Cooperative interplay between ECs and the gut immune system creates a homeostatic environment for the host-microbe relationship. Based on their specific expression patterns, glycan structures, especially α 1,2-fucose expressed on the apical side of ECs, are key molecules that act as communication tools for luminal microorganisms. Among numerous kinds of glycoproteins and glycolipids associated with epithelial α 1,2-fucosylation, asialo-GM₁ gangliosides are reported to be α1,2-fucosylated after SFB colonization⁹⁴. Emerging evidence suggests that mucosal immune cells, especially ILC3s, are also critical modulators of the gut immune system and epithelial physiology in response to commensal and pathogenic bacteria. Epithelial a1,2-fucose induced by ILC3s harbors protective and symbiotic roles with respect to luminal microorganisms, suggesting that IL-22- and/or LT-producing ILC3-mediated epithelial α 1,2-fucosylation is an important arm of the innate immune system in the digestive tract. Importantly, IL-10-producing T cells, a family of regulatory T cells, are also involved in the downregulation of epithelial α 1,2-fucosylation. Therefore, the intestinal innate and acquired immune system cooperatively orchestrate epithelial α 1,2-fucosylation for the creation of a homeostatic microenvironment in the intestine.

Selected symbionts such as *Bacteroides*, *Lactobacillus* and *Bifidobacterium*—but not pathogens—have a set of enzymes, including α 1,2-fucosidase, to catabolize epithelial sugar residues^{95–97}, suggesting that commensal bacteria might have evolutionarily acquired the ability to recycle host-derived glycan and adapt to the ecosystem in our intestine. This new perspective suggests that to distinguish between pathogenic and nonpathogenic microorganisms, it is insufficient to understand just the role of the host immune system, especially the microbial recognition system; we also need to understand how each microorganism adapts to its host intestinal microenvironment. Because epithelial glycosylation is a front-line host defense as well as a platform for cohabitation by luminal microorganisms, advancing our understanding of the mechanisms underlying epithelial glycosylation will open the door to innovative approaches for the control of acute and persistent infections and chronic inflammation.

ACKNOWLEDGMENTS

This work is financially supported by the Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency (JSPS; to H.K.); a Grant-in-Aid for Scientific Research on Innovative Areas (Homeostatic regulation by various types of cell death) (15H01367 to S.U.); a Scientific Research (S) grant (23229004 to H.K.); a Research Activity Start-up grant (15H06159 to Y.G.); a Young Scientists (A) grant (16H06229 to Y.G.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; a Challenging Exploratory Research grant from the JSPS (to S.U.); a grant (Adjuvant database) from The Ministry of Health, Labor and Welfare (MHLW) and the Japan Agency for Medical Research and Development (AMED) (to S.U. and H.K.); The Uehara Memorial Foundation (to Y.G.); the Naito Foundation (to Y.G.); the Astellas Foundation for Research on Metabolic Disorders (to Y.G.); and the Takeda Science Foundation (to Y.G.).

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

- 1. Goto, Y. & Kiyono, H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol. Rev. 245, 147-163 (2012).
- Marchiando, A.M., Graham, W.V. & Turner, J.R. Epithelial barriers in homeostasis and 2 disease. Annu. Rev. Pathol. 5, 119-144 (2010).
- Johansson, M.E. et al. The inner of the two Muc2 mucin-dependent mucus layers in 3 colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 105, 15064-15069 (2008).
- 4. Porter, E.M., van Dam, E., Valore, E.V. & Ganz, T. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect. Immun. 65, 2396-2401 (1997).
- Salzman, N.H., Ghosh, D., Huttner, K.M., Paterson, Y. & Bevins, C.L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522-526 (2003).
- Cash, H.L., Whitham, C.V., Behrendt, C.L. & Hooper, L.V. Symbiotic bacteria direct 6. expression of an intestinal bactericidal lectin. Science 313, 1126-1130 (2006).
- 7. Vaishnava, S. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255-258 (2011).
- Kurashima, Y., Goto, Y. & Kiyono, H. Mucosal innate immune cells regulate both gut 8. homeostasis and intestinal inflammation. Eur. J. Immunol. 43, 3108-3115 (2013).
- 9. Goto, Y. & Ivanov, I.I. Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol. Cell Biol. 91,204-214 (2013).
- 10. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381-393 (2015).
- 11. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367-380 (2015).
- 12. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485-498 (2009).
- 13. Honda, K. & Littman, D.R. The microbiome in infectious disease and inflammation.
- 14. Caballero, S. & Pamer, E.G. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu. Rev. Immunol. 33, 227-256 (2015).
- 15. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).
- 16. Pham, T.A. et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16, 504-516 (2014).
- 17. Pickard, J.M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638-641 (2014).
- 18. Aigal, S., Claudinon, J. & Römer, W. Plasma membrane reorganization: A glycolipid gateway for microbes. Biochim. Biophys. Acta 1853, 858-871 (2015).
- 19. Imai, M. & Kawaoka, Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2, 160-167 (2012).
- 20. Marionneau, S. et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122, 1967–1977 (2002).
- 21. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855-867 (2006).
- 22. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129-156 (2004).
- 23. Pinho, S.S. & Reis, C.A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540-555 (2015).
- 24. Terahara, K. et al. Distinct fucosylation of M cells and epithelial cells by Fut1 and Fut2, respectively, in response to intestinal environmental stress. Biochem. Biophys. Res. Commun. 404, 822-828 (2011).
- 25. Moran, A.P., Gupta, A. & Joshi, L. Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412-1425 (2011).
- 26. Fukuoka, S., Freedman, S.D. & Scheele, G.A. A single gene encodes membrane-bound and free forms of GP-2, the major glycoprotein in pancreatic secretory (zymogen) granule membranes. Proc. Natl. Acad. Sci. USA 88, 2898-2902 (1991).
- 27. Hase, K. et al. Uptake through glycoprotein 2 of FimH⁺ bacteria by M cells initiates mucosal immune response. Nature 462, 226-230 (2009).
- 28. Blondel, C.J. et al. CRISPR/Cas9 screens reveal requirements for host cell sulfation and fucosylation in bacterial type III secretion system-mediated cytotoxicity. Cell Host Microbe 20, 226-237 (2016).
- 29. Ma, B., Simala-Grant, J.L. & Taylor, D.E. Fucosylation in prokaryotes and eukaryotes. Glycobiology 16, 158R-184R (2006).
- 30. Becker, D.J. & Lowe, J.B. Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R-53R (2003).
- 31. Domino, S.E., Hiraiwa, N. & Lowe, J.B. Molecular cloning, chromosomal assignment and tissue-specific expression of a murine alpha(1,2)fucosyltransferase expressed in thymic and epididymal epithelial cells. Biochem. J. 327, 105-115 (1997).
- 32. Domino, S.E., Zhang, L. & Lowe, J.B. Molecular cloning, genomic mapping, and expression of two Secretor blood group α (1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract. J. Biol. Chem. 276, 23748-23756 (2001).
- 33. Rouquier, S. et al. Molecular cloning of a human genomic region containing the H blood group $\alpha(1,2)$ fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. J. Biol. Chem. 270, 4632-4639 (1995).

- 34. Avent, N.D. Human erythrocyte antigen expression: its molecular bases. Br. J. Biomed. Sci. 54, 16-37 (1997).
- 35. Hoskins, L.C. The ABO blood group antigens and their secretion by healthy and diseased gastric mucosa. Ann. NY Acad. Sci. 140, 848–865 (1967).
- 36. Kelly, R.J., Rouquier, S., Giorgi, D., Lennon, G.G. & Lowe, J.B. Sequence and expression of a candidate for the human Secretor blood group $\alpha(1,2)$ fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640-4649 (1995).
- 37. Michalski, J.C. & Klein, A. Glycoprotein lysosomal storage disorders: alpha- and beta mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim. Biophys. Acta 1455, 69-84 (1999).
- 38. Comstock, L.E. & Kasper, D.L. Bacterial glycans: key mediators of diverse host immune responses. Cell 126, 847-850 (2006).
- 39. Coyne, M.J., Reinap, B., Lee, M.M. & Comstock, L.E. Human symbionts use a host-like pathway for surface fucosylation. Science 307, 1778-1781 (2005).
- 40. Hooper, L.V., Xu, J., Falk, P.G., Midtvedt, T. & Gordon, J.I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96, 9833-9838 (1999).
- 41. Kashyap, P.C. et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc. Natl. Acad. Sci. USA 110, 17059-17064 (2013).
- 42. Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J. 8, 2193-2206 (2014).
- 43. Pacheco, A.R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature **492**, 113–117 (2012).
- 44. Umesaki, Y. & Ohara, M. Factors regulating the expression of the neutral glycolipids in the mouse small intestinal mucosa. Biochim. Biophys. Acta 1001, 163-168 (1989).
- 45. Engevik, M.A. et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G697-G711 (2013)
- 46. Bry, L., Falk, P.G., Midtvedt, T. & Gordon, J.I. A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 1380-1383 (1996).
- 47. Nanthakumar, N.N., Dai, D., Newburg, D.S. & Walker, W.A. The role of indigenous microflora in the development of murine intestinal fucosyl- and sialyltransferases. FASEB J. 17, 44-46 (2003).
- 48. Hooper, L.V., Bry, L., Falk, P.G. & Gordon, J.I. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays 20, 336-343 (1998).
- 49. Nanthakumar, N.N., Meng, D. & Newburg, D.S. Glucocorticoids and microbiota regulate ontogeny of intestinal fucosyltransferase 2 requisite for gut homeostasis. Glycobiology 23 1131-1141 (2013)
- 50. Liu, Z. et al. Mucosal gene expression profiles following the colonization of immunocompetent defined-flora C3H mice with Helicobacter bilis: a prelude to typhlocolitis. Microbes Infect. 11, 374-383 (2009).
- 51. Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 12, 941-948 (2011).
- 52. Tumanov, A.V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 44-53 (2011).
- 53. Kinnebrew, M.A. et al. Interleukin 23 production by intestinal CD103⁺CD11b⁺ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276-287 (2012).
- 54. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282-289 (2008).
- 55. Goto, Y. et al. IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Sci. Rep. 5, 15918 (2015).
- 56. Sawa, S. et al. RORgt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320-326 (2011).
- 57. Hurd, E.A. & Domino, S.E. Increased susceptibility of secretor factor gene Fut2-null mice to experimental vaginal candidiasis. Infect. Immun. 72, 4279-4281 (2004).
- 58. Chessa, D., Winter, M.G., Nuccio, S.P., Tükel, C. & Bäumler, A.J. RosE represses Std fimbrial expression in Salmonella enterica serotype Typhimurium, Mol. Microbiol, 68. 573-587 (2008).
- 59. Magalhães, A. et al. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 19, 1525-1536 (2009).
- 60. Magalhães, A. & Reis, C.A. Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz. J. Med. Biol. Res. 43, 611-618 (2010).
- 61. Ruiz-Palacios, G.M., Cervantes, L.E., Ramos, P., Chavez-Munguia, B. & Newburg, D.S. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1,2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112-14120 (2003).
- 62. Blackwell, C.C. et al. Non-secretion of ABO antigens predisposing to infection by Neisseria meningitidis and Streptococcus pneumoniae. Lancet 2, 284-285 (1986).
- 63. Blackwell, C.C., Jonsdottir, K., Hanson, M.F. & Weir, D.M. Non-secretion of ABO blood group antigens predisposing to infection by Haemophilus influenzae. Lancet 2, 687 (1986)
- 64. Chaim, W., Foxman, B. & Sobel, J.D. Association of recurrent vaginal candidiasis and secretory ABO and Lewis phenotype. J. Infect. Dis. 176, 828-830 (1997).
- 65. Sheinfeld, J., Schaeffer, A.J., Cordon-Cardo, C., Rogatko, A. & Fair, W.R. Association of the Lewis blood-group phenotype with recurrent urinary tract infections in women. N. Engl. J. Med. 320, 773-777 (1989).

Annu. Rev. Immunol. 30, 759–795 (2012).

- 66. Stapleton, A., Nudelman, E., Clausen, H., Hakomori, S. & Stamm, W.E. Binding of uropathogenic *Escherichia coli* R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. *J. Clin. Invest.* **90**, 965–972 (1992).
- Koda, Y., Soejima, M. & Kimura, H. The polymorphisms of fucosyltransferases. *Leg. Med. (Tokyo)* 3, 2–14 (2001).
- Liu, Y. *et al.* Extensive polymorphism of the FUT2 gene in an African (Xhosa) population of South Africa. *Hum. Genet.* **103**, 204–210 (1998).
- Svensson, L., Petersson, A. & Henry, S.M. Secretor genotyping for A385T, G428A, C571T, C628T, 685delTGG, G849A, and other mutations from a single PCR. *Transfusion* 40, 856–860 (2000).
- 70. Koda, Y., Soejima, M., Liu, Y. & Kimura, H. Molecular basis for secretor type $\alpha(1,2)$ -fucosyltransferase gene deficiency in a Japanese population: a fusion gene generated by unequal crossover responsible for the enzyme deficiency. *Am. J. Hum. Genet.* **59**, 343–350 (1996).
- 71. Yu, L.C. *et al.* Correlation of a missense mutation in the human Secretor α1,2-fucosyltransferase gene with the Lewis(a+b+) phenotype: a potential molecular basis for the weak Secretor allele (Se^w). Biochem. J. **312**, 329–332 (1995).
- 72. Franke, A. *et al.* Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. *Nat. Genet.* **42**, 1118–1125 (2010).
- McGovern, D.P. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum. Mol. Genet. 19, 3468–3476 (2010).
- Aghdassi, A.A., Weiss, F.U., Mayerle, J., Lerch, M.M. & Simon, P. Genetic susceptibility factors for alcohol-induced chronic pancreatitis. *Pancreatology* 15 (Suppl.), S23–S31 (2015).
- Folseraas, T. *et al.* Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. *J. Hepatol.* 57, 366–375 (2012).
- Ishitoya, S., Yamamoto, S., Mitsumori, K., Ogawa, O. & Terai, A. Non-secretor status is associated with female acute uncomplicated pyelonephritis. *BJU Int.* 89, 851–854 (2002).
- Smyth, D.J. et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60, 3081–3084 (2011).
- Tang, H. *et al.* A large-scale screen for coding variants predisposing to psoriasis. *Nat. Genet.* 46, 45–50 (2014).
- 79. Xavier, J.M. *et al.* FUT2: filling the gap between genes and environment in Behçet's disease? *Ann. Rheum. Dis.* **74**, 618–624 (2015).
- Xavier, R.J. & Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. *Nature* 448, 427–434 (2007).
- Miyoshi, J. *et al.* Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn's disease. *J. Gastroenterol.* 46, 1056–1063 (2011).
- 82. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interac-

tion of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl. Acad. Sci. USA 108, 19030–19035 (2011).

- Wacklin, P. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6, e20113 (2011).
- Lewis, Z.T. et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. *Microbiome* 3, 13 (2015).
- Smilowitz, J.T. *et al.* The human milk metabolome reveals diverse oligosaccharide profiles. *J. Nutr.* **143**, 1709–1718 (2013).
- Rayes, A. *et al.* A genetic modifier of the gut microbiome influences the risk of graftversus-host-disease and bacteremia following hematopoietic stem cell transplantation. *Biol. Blood Marrow Transplant.* http://dx.doi.org/10.1016/j.bbmt.2015.11.017 (2015).
- Azevedo, M. *et al.* Infection by *Helicobacter pylori* expressing the BabA adhesin is influenced by the secretor phenotype. *J. Pathol.* **215**, 308–316 (2008).
- Borén, T., Falk, P., Roth, K.A., Larson, G. & Normark, S. Attachment of *Helicobacter pylori* to human gastric epithelium mediated by blood group antigens. *Science* 262, 1892–1895 (1993).
- Lindesmith, L. *et al.* Human susceptibility and resistance to Norwalk virus infection. *Nat. Med.* 9, 548–553 (2003).
- Imbert-Marcille, B.M. et al. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J. Infect. Dis. 209, 1227–1230 (2014).
- Kambhampati, A., Payne, D.C., Costantini, V. & Lopman, B.A. Host genetic susceptibility to enteric viruses: a systematic review and metaanalysis. *Clin. Infect. Dis.* http:// dx.doi.org/10.1093/cid/civ873 (2015).
- Payne, D.C. *et al.* Epidemiologic association between FUT2 secretor status and severe rotavirus gastroenteritis in children in the United States. *JAMA Pediatr.* 169, 1040– 1045 (2015).
- 93. Günaydın, G., Nordgren, J., Sharma, S. & Hammarström, L. Association of elevated rotavirus-specific antibody titers with HBGA secretor status in Swedish individuals: the *FUT2* gene as a putative susceptibility determinant for infection. *Virus Res.* 211, 64–68 (2016).
- 94. Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A. & Setoyama, H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. *Microbiol. Immunol.* **39**, 555–562 (1995).
- Hooper, L.V. Do symbiotic bacteria subvert host immunity? Nat. Rev. Microbiol. 7, 367–374 (2009).
- Katayama, T. *et al.* Molecular cloning and characterization of *Bifidobacterium bifidum* 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). *J. Bacteriol.* 186, 4885–4893 (2004).
- Rodríguez-Díaz, J., Carbajo, R.J., Pineda-Lucena, A., Monedero, V. & Yebra, M.J. Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using α-Lfucosidases from Lactobacillus casei. Appl. Environ. Microbiol. 79, 3847–3850 (2013).