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Abstract: Cow’s milk protein allergy (CMPA) is a prevalent food allergy among infants and young
children. We conducted a randomized, multicenter intervention study involving 194 non-breastfed
infants with CMPA until 12 months of age (clinical trial registration: NCT03085134). One exploratory
objective was to assess the effects of a whey-based extensively hydrolyzed formula (EHF) supple-
mented with 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) on the fecal microbiome and
metabolome in this population. Thus, fecal samples were collected at baseline, 1 and 3 months from
enrollment, as well as at 12 months of age. Human milk oligosaccharides (HMO) supplementation
led to the enrichment of bifidobacteria in the gut microbiome and delayed the shift of the micro-
biome composition toward an adult-like pattern. We identified specific HMO-mediated changes
in fecal amino acid degradation and bile acid conjugation, particularly in infants commencing the
HMO-supplemented formula before the age of three months. Thus, HMO supplementation partially
corrected the dysbiosis commonly observed in infants with CMPA. Further investigation is necessary
to determine the clinical significance of these findings in terms of a reduced incidence of respiratory
infections and other potential health benefits.

Keywords: human milk oligosaccharides; microbiome; metagenomics; fecal community type;
metabolomics; amino acids; bile acids; short-chain fatty acids

1. Introduction

The developing gut microbiome undergoes major changes from birth to early child-
hood and significantly impacts early immune development [1,2]. Diet is one of the main fac-
tors affecting this developmental trajectory. Human milk is a complex biofluid comprising
multiple nutritive and non-nutritive components that support early growth, development
and immune maturation [3]. Among the non-nutritive components, human milk oligosac-
charides (HMO) are a highly abundant and diverse group of complex carbohydrates that
make up the third biggest component of human milk solids [4]. HMOs are formed by
different combinations of five basic monosaccharides (fucose, N-acetyl-neuraminic acid,
N-acetyl-glucosamine, glucose, and galactose) and are considered non-digestible by human
digestive enzymes. The vast majority of HMO passes through the gastrointestinal tract
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(GIT) and drives the establishment and maturation of the early microbiome, largely through
providing the specific substrate for an enrichment of infant-type, HMO-utilizing bifidobac-
teria [5,6]. The saccharolytic fermentation of HMO by bifidobacteria produces metabolites
such as acetic acid and aromatic lactic acids which have important immune-modulating
functions and enhance the protection against a broad range of infections [7–11]. Due to
their similarities with intestinal glycans, HMO can directly interact with the gut epithelial
barrier and modify the physical host-microbe interaction, with preventive effects against
colonization with enteric pathogens and improved mucosal barrier function [4,12].

A previous clinical trial has shown that non-hydrolyzed cow’s milk-based infant for-
mula supplemented with 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) is well
tolerated and supports normal growth in healthy term infants [13]. In that study, reduced
incidences of lower respiratory tract infections (LRTI) and medication use (antipyretics
and antibiotics) were reported in the study group fed with the HMO-supplemented infant
formula, compared to the control group receiving no HMO [13]. The reduced antibiotic
usage in the HMO-supplemented feeding group was associated with a shift of the gut
microbiome composition closer to patterns observed in breastfed infants [14]. Further in-
vestigations, using a combination of machine learning and in-vitro experiments, suggested
that bifidobacteria (in particular, Bifidobacterium longum subsp. infantis) were involved in
the observed reduction in LRTI [15]. Martin et al. described molecular changes related to
HMO feeding and protection from LRTI, including an increase in gamma glutamylation
and N-acetylation of amino acids, as well as a decrease in inflammatory lipids. Changes
in amino acid and lipid metabolism were linked to Bifidobacterium and Bacteroides species,
respectively [16].

The introduction of a complementary diet from 4 to 6 months of age represents a
turning point in the early development of the gut microbiome and immune system. The
increased dietary intake of fibers and proteins promotes the establishment of clades that are
capable of digesting more diverse glycans and proteins. This is reflected in a progressive
shift from a milk-adapted microbiome and metabolism towards a more diverse, adult-
like microbial ecosystem rich in firmicutes [17,18]. During weaning, the infant’s immune
system is exposed to a wider range of dietary and bacterial antigens, which is thought to
stimulate the appropriate maturation of early immune responses and prevent the onset of
pro-inflammatory or allergic pathologies [19–21].

Early gut microbiome composition and metabolic profiles change significantly after diet
diversification commences. Fermentation of dietary fibers and proteins leads to an increase in
colonic short-chain fatty acids (SCFA), such as butyric acid and propionic acid, and branched-
chain fatty acids (BCFA), respectively [22]. These compounds are plausible mediators of host-
microbiome interactions, which modulate gut and immune functions during this period [2,23].
In addition, an inadequate maturation of the microbiome and its associated metabolic profile
may affect immune development and functioning later in life [1,2,24,25]. Cow’s milk protein
allergy (CMPA) is one of the most common food allergies in infancy and early childhood [26].
The dietary management of young infants with CMPA who are not exclusively breastfed relies
on specialized formulas, including extensively hydrolyzed formula (EHF) or amino acid-based
formula [27,28]. HMO supplementation of EHF formulae for CMPA may provide beneficial
effects on microbiome and immune development.

The primary objectives of our clinical study were to investigate the effects of 2′-FL
and LNnT supplementation in infants with CMPA on weight gain, anthropometric mea-
surements, and safety as previously published [29]. Infants were randomized to receive a
whey-based, lactose-containing EHF supplemented with 2′-FL and LNnT or an HMO-free
control EHF from the time of randomization to 12 months of age. The study showed that in-
fants in both study groups achieved normal growth. Furthermore, the study suggested that
the HMO-supplemented formula may reduce the risk of respiratory and gastrointestinal in-
fections in the first year of life [29]. The exploratory objective of this study was to assess the
effects of 2′-FL and LNnT on the fecal microbial ecosystem in this population. Thus, stool
samples were collected at various time points during this study, and shotgun metagenomics
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as well as targeted mass spectrometry (MS)-based metabolomic analyses were performed.
The results enabled us to characterize HMO-mediated changes in microbial and metabolic
profiles over the study period to 12 months of age.

2. Results
2.1. Cohort Description

The study cohort comprised 194 non-breastfed infants aged between 2 weeks and
6 months (mean age 3.2 months) from 7 countries in Europe and Singapore with symptoms
suggestive of CMPA. Participants were randomized to receive either an EHF supplemented
with 2′-FL and LNnT (test formula) or the same EHF without HMO (control formula) until
12 months of age. The protein content of the test formula was slightly lower than that of
the control formula (2.5 g/100 kcal vs. 2.2 g/100 kcal). The first 4 months of the study were
conducted as a growth trial (principal study period). The introduction of a complementary
solid diet was allowed from 4 months of age. Infants were followed to 12 months of age
(secondary study period). Demographics of the study cohort, clinical details, and study
outcomes (growth, tolerability, and safety) were previously published [29].

Of the 194 participants, 151 (79 test, 72 control) completed the 4-month growth trial
without major protocol deviations (per protocol cohort). Of these, 142 (71 test, 71 control) re-
mained in the trial until 12 months of age (visit 6). The microbiome and metabolomic analy-
ses were limited to the per-protocol cohort and performed at baseline (visit 0), after 1 month
(visit 1), and 3 months (visit 3) of study formula intake, and during follow-up at 12 months
of age (visit 6). The microbiome composition and fecal metabolomic signature were strongly
influenced by the infant’s age in both feeding groups (Supplementary Figure S3A,B). When
including all subjects in the analysis, we did not observe a consistent HMO-related mi-
crobiome and metabolic signature, probably due to the wide age range at randomization
(Supplementary Figure S1). To overcome this, we stratified subjects into an early enroll-
ment (EE) cohort aged ≤90 days at baseline (n = 60) and a late enrollment (LE) cohort aged
>90 days at baseline (n = 72). This stratification allowed reducing the confounding effects
of age and complementary diet, as the EE cohort had not started non-formula foods at the
time of the baseline visit (V0) and 1-month follow-up (V1). The study design is described
in Figure 1.
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was divided into an early enrollment (EE: aged 0 to 3 months) and a late enrollment cohort (LE:
aged 3 to 6 months). Fecal samples were collected at 1 month (V1) and 3 months from the start
of the study formulas (V3), as well as at 12 months of age (V6). If sufficient sample volume was
available, metagenomics and targeted metabolomics analysis were performed. In total, samples from
132 infants (EE: n = 60; LE: n = 72) were available for metagenomic analysis, and 84 samples for
fecal metabolomics (EE: n = 41; LE: n = 43), respectively. More details about sample numbers in the
control and test groups at baseline (V0), visit 1 (V1), visit 3 (V3), and visit 6 (V6) are available in
Supplementary Figure S2.

2.2. Human Milk Oligosaccharides Supplementation Shifts Microbiome Development by Favoring
a Bifidobacteria-Enriched Microbiome

In both feeding groups, the microbiome development was strongly influenced by age
(Supplementary Figure S3A). An increase in phylogenetic diversity was observed over the
study period for both treatment groups, which is characteristic of microbiome development
during the first year of life (Figure 2A, Supplementary Table S1). In the EE cohort, the
phylogenetic diversity was significantly lower in the test group than in the control group
at 3 months after enrollment (V3, p = 0.0011, Cliff’s delta (CD): −0.49, lower confidence
interval (LCI): −0.71, upper confidence interval (UCI): −0.20). This trend remained at
12 months of age but was no longer statistically significant (V6, p = 0.92). In the LE cohort,
a decreased phylogenetic diversity was observed in the test group at 12 months of age (V6,
p = 0.027, CD: −0.32, LCI: −0.55, UCI: −0.04).

A clustering of microbiome composition using the Dirichlet multinomial mixtures
approach was performed to investigate the trajectory of the overall microbiome devel-
opment. We identified an optimal number of five microbial community types (FCT) at
the genus level (Figure 2B). FCT were numbered from FCT1 to FCT5 according to their
temporal appearance (Figure 2C). Extensive differences in taxonomic composition and
functionality were observed across the FCT (Figure 2B). The youngest infants had the high-
est proportion of FCT1 (enriched in proteobacteria), while FCT2 (enriched in actinobacteria)
was present in higher proportions in infants aged from 2 to 8 months. At 12 months of
age, most infants had transitioned to FCT3, FCT4, or FCT5. FCT3 was high in firmicutes
and Lachnoclostridium. FCT4 was enriched with firmicutes, and FCT5 harbored higher fir-
micutes and Faecalibacterium (Figure 2B,C). The latter also showed a higher capacity to
produce butyric acid (Supplementary Figure S4). The order in which infants transitioned
from one cluster to another further characterized the age-related microbiome maturation,
with transitions from “early” (FCT1 and FCT2) to “late” (FCT3, FCT4, FCT5) microbial
communities (Figure 2C).

When analyzing the FCT composition stratified by visits, feeding groups, and cohorts,
significant differences were found between the test and control groups at V3 (Wilcoxon–
Mann–Whitney (WMW) p = 0.029, CD: −0.32, LCI: −0.56, UCI: −0.022) and V6 (WMW
p = 0.0098, CD: −0.35, LCI: −0.57, UCI: −0.08) in the EE and LE cohorts, respectively
(Figure 2D,E, Supplementary Table S2). In both cohorts, the test group had higher propor-
tions of infants with early FCTs. In the EE cohort at V3, FCT3 was less represented in the
test group compared to the control group (Fisher’s exact, p = 0.025). In the LE cohort, FCT5
was significantly less prevalent in the test group than in the control group (Fisher’s exact,
p = 0.049) at V6. To further study the effect of HMO supplementation on the development
of the infant’s microbiome, we used a Kaplan–Meier approach to compare the duration
before transitioning from one FCT to the next between feeding groups (Figure 2F,G). In the
EE cohort, the transition to FCT3 (or FCT4 or FCT5) occurred significantly later (log-rank
p = 0.033, effect size: 0.56, LCI: 0.32, UCI:0.96) in the test group, which indicated that the
passage from “early” to “late” FCTs was slowed down by HMO supplementation in this
cohort. No significant difference between the feeding groups was found in the LE cohort
(Supplementary Table S3).
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Figure 2. Comparison of microbiota compositions and trajectories between feeding groups (test vs.
control), stratified by early enrollment (0–3 months of age; EE) and late enrollment (3–6 months of age;
LE). (A) Alpha diversity (Faith’s phylogenetic diversity [PD]) of the gut microbiomes of the infants in
the two feeding groups at each timepoint (V0, V1, V3, V6) stratified for the EE and LE cohorts. Box
plots show the median, 25th and 75th percentiles with Tukey whiskers. At each time point, the two
treatment groups were compared, stratified by EE and LE, using a two-sided Mann–Whitney U test.
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Nominal p values are indicated above the groups. (B) Taxonomical overview of the 5 fecal community
types (FCT) at the genus level. Bar plots display the mean abundance within each FCT of the 10 most
abundant taxa; the remainder are grouped in “Other.” (C) The transition model analysis depicts the
temporal progression from early to late FCT clusters based on all 481 samples. Node sizes represent
the fraction of infants in a given cluster per age group (column). Line widths represent the fraction
of transitions per age group (column). The line color indicates the transition category (grey: no
change, blue: progression, red: regression). In analogy to the methodology used by Stewart et al.,
only transitions with frequencies >4% are shown [2]. (D,E) Distribution of FCTs per feeding group in
the EE (D) and LE cohort (E). For each time point, the proportion of samples assigned to each of the
five FCTs is shown, stratified by treatment group and enrollment cohort. (F,G) Kaplan–Meier plot
illustrating the transitioning to FCT3 (or later FCT, i.e., FCT4 or FCT5) as a function of age for the
EE cohort (F) and LE cohort (G). Time of event is defined as the age at the earliest visit where the
infant is observed to have the FCT3 or later FCTs. The two treatment groups were compared using
the log-rank test, and nominal p values are indicated above each plot. Vertical lines indicate censored
data. The seven infants with only a V6 sample are excluded. The bottom panel shows the number of
samples for a given age (bin width = 15 days) and illustrates the uneven age distribution. NB: The LE
cohort has no observations during the first 90 days. A cross on the survival line is marked when data
are no longer available for a given infant beyond that time point.

Differences in taxonomic composition between feeding groups at each visit in the EE
and LE cohorts were assessed using an enrichment analysis at the metagenomic species
(MGS) level (Figure 3, Supplementary Table S4). Many Bifidobacterium species appeared to
be enriched in response to HMO feeding at V1 (Figure 3A) and V3 (Figure 3B) in the EE
cohort, although these apparent differences did not reach statistical significance. However,
when performing the analysis at the genus level, we observed a significant enrichment of
bifidobacteria in the test group, with the largest positive effect size found for an increase in
the abundances of Bifidobacterium in HMO-treated infants at V1 (WMW, p = 0.00047, CD:
0.74) and at V3 (WMW, p = 0.0152, CD: 0.51). This enrichment in bifidobacteria was no
longer significant at V6 (Supplementary Figure S5). A similar trend was observed in the
LE cohort at V1, although fewer bifidobacterial species were enriched in the test group
(Supplementary Figure S5, Supplementary Table S4), while no other taxa at the species or
genus level passed the significance threshold. This trend disappeared at V3 and V6.
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abundance between the control and HMO-treated infants at (A) V1 and (B) V3. The included MGS
(y-axis) are sorted by their corresponding Cliff’s delta (x-axis). The following numbers of samples were
included at V1: EE control, n = 27; EE test, n = 32; and at V3: EE control, n = 25; EE test, n = 33.

In summary, these observations show that feeding of the HMO-supplemented EHF
promoted an enrichment of bifidobacteria and slowed the microbiome maturation. This
effect was stronger in infants who were commenced on the HMO-supplemented EHF
before 3 months of age.

2.3. Human Milk Oligosaccharides Supplementation Impacts Fecal Metabolites from Colonic
Amino Acid and Bile Acid Metabolism in the EE Cohort

A total of 137 metabolites were identified and quantified, including HMO, SCFA, lipids,
bile acids, and other host-gut microbial metabolites (Supplementary Table S5). Changes in
metabolic signatures by feeding group were explored using multivariate and univariate
analysis (see Section 4.7). Most metabolic differences between the feeding groups were
found at V3 and V6 (Supplementary Table S6).

The fecal metabolite profiles combining V1, V3, and V6 samples differed between
the EE and LE cohorts. Medium-chain fatty acids commonly found in infant formu-
lae (dodecanoic acid, decanoic acid, and myristic acid) were higher in the EE cohort,
whereas lactic acid, acetic acid, and secondary bile acids increased in the LE cohort
(Supplementary Figure S6). These differences are likely explained by age and the intro-
duction of the complementary diet. In the EE cohort, a partial least square-discriminate
analysis (PLS-DA) modeled the influence of age and formula type (i.e., control vs. test)
along the first and the second component, respectively (Figure 4A). In addition, a Wilcoxon–
Mann–Whitney (WMW) test was used to rank metabolites according to their statistical
significance between the control and test group at each visit. A total of 14 metabolites dif-
fered between the feeding groups in both the multivariate and univariate analyses (Table 1
and Figure 4B). Among them, 2′-FL was significantly higher in the feces of infants in the test
group compared to control infants, reflecting HMO supplementation (Figure 4C). Of note,
traces of 2′-FL were also found in fecal samples in the control group (average 86 nmol/g at
V0, 64 nmol/g at V1, and less than 20 nmol/g at V3 and V6). A decreased fecal content
in intermediates of the metabolism of branched-chain amino acids (BCAA), lysine, and
aromatic amino acids (AAA) was found in the test group after 3 months of treatment (V3)
and maintained to 12 months of age (V6) (Table 1 and Figure 4C). In line with this finding,
phenylalanine, a precursor of aromatic compounds, was also reduced at 12 months of age
(V6). Together, these results indicate the downregulation of bacterial protein catabolism
with HMO supplementation. Furthermore, a decrease in fecal content of a secondary bile
acid, dehydrocholic acid, was observed in the test group compared to the control group
after 3 months of treatment (V3) but not at 12 months of age (V6). In the LE cohort, we
found 10 metabolites discriminating between the control and test groups, with ten free
fatty acids (including oleic and palmitoleic acid) being upregulated in the test group at V6
(Supplementary Figure S6 and Supplementary Table S7).

2.4. Fecal Ratios of Unconjugated/Conjugated Bile Acids and Acetic Acid Levels, Markers of
Bifidobacterial Metabolism, Are Modulated by Human Milk Oligosaccharides in the EE Cohort

Bifidobacteria are known to impact the production of SCFA and bile acid profile in the
gut microbiome [29,30]. We assessed to what extent HMO supplementation impacted bile
acid deconjugation and SCFA production in the study cohort. The unconjugated/conjugated
cholic acid (CA/CCA), unconjugated/conjugated chenodeoxycholic acid (CDCA/CCDCA),
unconjugated/conjugated lithocholic acid (LCA/CLCA), and total unconjugated/conjugated
bile acid ratios (BA/CBA) were calculated. No significant differences in any of the bile acid
ratios or SCFA were found between the control and test groups at any visit. However, when
looking at the trajectories over time, BA/CBA and CA/CCA significantly decreased in the
control group at V1 (WMW, p = 0.021 for BA/CBA; WMW, p = 0.015 for CA/CCA), V3
(WMW, p = 0.0038 for BA/CBA; WMW, p = 0.0031 for CA/CCA) and V6 (WMW, p = 0.014
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for BA/CBA; WMW, p = 0.0031 for CA/CCA) compared to the baseline, while these ratios
remained unchanged from baseline in the test group (Figure 5A,B). These results suggest that
the bifidobacteria-enriched microbiome maintains bile acid deconjugation activity over time in
the HMO-supplemented test group. In addition, acetic acid levels in the control group tended
to decrease from the baseline to V1 (WMW p = 0.09), whereas levels remained stable over this
period in the test group (Figure 5C).
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Figure 4. HMO supplementation impacts the fecal metabolic profile in the EE cohort. (A) PLS regres-
sion score plot modeling age on the first component and feeding groups on the second component at
V3 and V6. (B) Volcano plot showing cumulative VIP score and correlation coefficient to treatment
(PC2). Each dot corresponds to a metabolite. Most discriminating metabolites (VIP > 1 & |PLS
coefficient (p(corr))| > 0.2) to feeding groups are highlighted in green. (C) log2 scaled concentration
(nmol/g) of 2′-FL, lactose, 3-hydroxyphenylacetic acid, phenylacetic acid, isobutyric acid, and isova-
leric acid in the control (highlighted by pink box plots) and test group (highlighted by blue box plots)
at each visit. The cross symbols show the outliers that are 1.5 times the interquartile range away from
the bottom or top of the box. Significant differences between treatment groups were calculated using
the Wilcoxon–Mann–Whitney test (p-value * <0.05, *** <0.001).
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Table 1. Summary of the main metabolites discriminating between the control and test groups in the
EE cohort at V3 and V6.

PLS Model at V3 and V6 WMW Test V3 WMW Test V6

Metabolites Correlation
with Treatment VIP Score FC Test/Control p Value FC Test/Control p Value

2′-Fucosyllactose 0.52 1.63 19.07 0.0001 2.44 0.0200
Lactose 0.50 1.14 1.80 0.0033 0.98 0.5600

Hydroxybenzoic acid 0.41 1.37 1.01 0.8100 2.34 0.0140
2-Hydroxyphenylacetic acid −0.58 1.30 0.31 0.0100 0.60 0.054
3-Hydroxyphenylacetic acid −0.28 1.52 0.24 0.0040 0.77 0.011

Phenylacetic acid −0.70 1.35 0.24 0.0089 0.34 0.0065
Hydrocinnamic acid −0.46 1.37 0.21 0.1400 0.25 0.0007

4-Cresol sulfate −0.31 1.00 0.28 0.0320 0.40 0.14
L-Phenylalanine −0.34 1.14 1.31 0.3700 0.41 0.0083
Isobutyric acid −0.67 1.37 0.44 0.0098 0.36 0.0035
Isovaleric acid −0.73 1.41 0.28 0.0080 0.44 0.00730
Pimelic acid −0.22 1.43 0.58 0.1230 0.57 0.0210

Dehydrocholic acid −0.30 1.62 0.51 0.0490 0.69 0.1800

PLS: Partial Least Squares regression VIP:Variable influence on projection FC: Fold change WMW: Wilcoxon
Mann Whitney.
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Figure 5. HMO supplementation maintains fecal unconjugated/conjugated bile acid ratios and
fecal acetic acid levels at each study visit. (A) The trajectory of the total unconjugated/conjugated
bile acid ratio (total unconjugated bile acids is the sum of cholic acid, chenodeoxycholic acid, litho-
cholic acid, and deoxycholic acid). The total conjugated bile acids are the sum of taurocholic acid,
taurochenodeoxycholic acid, taurodeoxycholic acid, glycocholic acid, taurolithocholic acid, gly-
cochenodeoxycholic acid, and glycodeoxycholic acid). (B) Unconjugated/conjugated cholic acid ratio
(C) Acetic acid in the control group and test group at each visit. Control group at each timepoint
is presented in pink and test group is presented in blue. Significant differences between visits or
between treatment groups were calculated using the Wilcoxon–Mann–Whitney test (p-value # <0.1
* <0.05, ** <0.01).
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2.5. Omics Integration Describes Association between Bacterial Function and Fecal Metabolites
Involved in Amino Acid and Bile Acids Metabolism

To investigate whether key microbial functions involved in amino acid metabolism and
bile acid deconjugation contribute to the changes observed in the fecal metabolome of the
EE cohort, the metabolomics data were integrated with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) orthologues (KO). The metabolites significantly discriminating
between the control and test groups in the EE cohort, as well as the CA/CCA and BA/CBA
bile acid ratios, were included in the correlation analysis (n = 32 metabolites). Most of these
metabolites were fusel acids (isobutyric acid, isovaleric acid, 4-hydroxyphenylacetatic acid,
and 2-phenylacetic acid) derived from the fermentation of valine, leucine, tyrosine, and
phenylalanine via the Ehrlich or amine pathways (Figure 6A, Supplementary Tables S8–S10).
The KO corresponding to the transaminases, dehydrogenase, and decarboxylases involved
in these pathways and the choloylglycine hydrolase involved in bile acid deconjugation
were identified using KEGG (n = 34 KO) and mapped onto the metagenomic dataset
(Figure 6B).
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Association map of the analyses integrating FCT distribution, test formula effect, the gut microbiome,
and the stool metabolome in the early enrollment (EE) cohort at V3 and V6. The main ‘heatmap’ panel
shows Kendall’s correlation between a priori selected bacterial enzyme (KOs) and stool metabolites
using all V3 and V6 samples with matched metagenomic and metabolomic information (samples,
n = 70). The colors indicate the direction and magnitude of the correlation (Kendall’s Tau correlation
coefficient), where red means a positive correlation between the KO and the stool metabolite, and
blue means a negative correlation. Statistically significant correlations are indicated with filled grey
(Kendall correlation p < 0.05) or black (Kendall correlation FDR < 10%) circles. The right and bottom
‘sidebar’ panels show associations between the same KOs and metabolites, respectively, and HMO-
treatment groups (+HMO) or correlation with FCT distribution (FCT) at V3 and V6. For +HMO,
the colors indicate the direction and magnitude of the association (Cliff’s delta). Brown means that
the KO or metabolite is more abundant in HMO-treated infants, and green means that the KO or
metabolite is more abundant in control infants. For FCT, the colors indicate the correlation (Kendall’s
Tau correlation coefficient), where red means that the KO or metabolite is enriched in late FCT, and
blue means it is enriched in early FCT. Statistically significant associations/correlations are indicated
with open (MWU/Kendall correlation p < 0.05) or filled (MWU/Kendall correlation FDR < 10%)
circles. For sidebars, the following number of samples were included: At V3/V6, associations with
KOs, control, n = 25/24; test, n = 33/25; associations with metabolites, control, n = 17/18; test,
n = 21/14 (detailed statistics in Supplementary Tables S8–S10). (B) Production of fusel acids and fusel
alcohols from amino acids via the Ehrlich or the biogenic amine pathway.

Several statistically significant positive associations were found between a cluster
of metabolites, including fusel acids, 4-cresol sulfate, phenylalanine, hydrocinnamic acid
and pimelic acid, and KO involved in the Ehrlich pathways (Figure 6B). Furthermore,
several of these metabolites and KO were positively associated with later FCT at V3
and were lower in infants fed with HMO-supplemented EHF. On the other hand, the
same cluster of metabolites was negatively associated with other KO from the amino acid
metabolism, including some KO involved in the amine pathways. These results suggest
that the microbiome contributes to the production and excretion of these amino acid
metabolites via the Ehrlich pathway rather than the biogenic amine pathway. Modulation
of the microbiome composition and metabolism by HMO may lead to a downregulation of
the Ehrlich pathway and amino-acid metabolites.

This analysis also revealed that bile acid hydrolase was positively correlated with
BA/CBA and negatively correlated with dehydrocholic acid. The bile acid hydrolase
activity appeared to be higher in infants from the test group at V6, although the difference
was not statistically significant. We also found significant positive associations between
BA/CBA, CA/CCA, or bile acid hydrolase and late FCTs at V3.

3. Discussion

The pathophysiology of CMPA is complex and multifactorial [30]. Several studies
have highlighted a dysbiotic gut microbiome in infants with CMPA characterized by a
reduced microbial diversity, a loss of beneficial bacteria such as bifidobacteria, and the
presence of opportunistic pathogens [31]. Dysbiosis is thought to play an important role in
the disturbance of early immune development and regulation [32]. Compensating for this
dysbiosis by HMO intake may have a positive impact on the clinical outcomes of CMPA,
including immunological tolerance development to cow’s milk protein (‘outgrowth’). In
the present study, we found that HMO supplementation impacts the early fecal microbiome
development and modulates bacterial metabolic profiles in EHF-fed infants with CMPA.
We demonstrated that HMO supplementation was associated with a significant enrichment
in bifidobacteria, slowing the progression to an adult-type microbiome more abundant in
firmicutes. The HMO effect on microbiome composition was associated with beneficial
effects on several metabolic pathways, including SCFA production (i.e., acetic acid), amino
acid degradation, and bile acid conjugation. To our knowledge, this is the first study
describing detailed microbiome and metabolome patterns related to EHF feeding with or
without HMO in infants with CMPA.
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CMPA symptoms may manifest at different ages in infancy; therefore, management with
an EHF may commence before or after the introduction of complementary solid foods. In
the present analysis of the fecal microbiome, we stratified the cohort into infants enrolled
before 3 months of age (EE cohort) and those enrolled after 3 months of age (LE cohort). This
stratification aimed to reduce the confounding effects of age and complementary diet. The
EE cohort was exclusively formula-fed to about 4 months of age, i.e., from enrollment to the
1-month follow-up visit. We hypothesized that the HMO effects on the gut microbiome and
metabolome would be easier to identify before solid foods and dietary fiber were introduced.

Global fecal microbial changes were investigated by computing phylogenetic alpha di-
versity. Using a classifying-based analytical approach, we defined five clusters of samples,
i.e., fecal community types (FCT), characterized by similar taxonomic groups at the genus
level. Overall, we observed a more diverse and complex gut ecosystem as a function of age
which is in accordance with the gut microbiome maturation trajectory described by others [1,2].
The prevalence of early FCTs depicting an ecosystem adapted to a milk-based diet (rich in
Escherichia, Klebsiella, Veillonella, and Bifidobacterium) is typical of early infancy up to about
4 months. With the introduction of complementary feeding, FCTs evolve toward a more
diverse and adult-like ecosystem rich in Lachnoclostridium, Bacteroides, and Ruminococcus.

Our FCT model showed that the intake of HMO slowed the developmental progression
toward a mature, adult-type microbiome composition, illustrated by a reduced microbial
diversity and an enrichment of early-stage FCTs in the HMO group compared to the
control group.

In the EE cohort, these ecological differences were particularly visible after 3 months
of HMO intake (V3). A survival analysis showed that, at the same age, fewer infants in the
HMO group transitioned to a later FCT stage compared to control infants. The HMO group
exhibited enrichment in bifidobacteria and depletion in proteobacteria (e.g., Escherichia coli)
after 1 and 3 months of HMO formula feeding, thus partially reversing the gut microbial
dysbiosis. Within the genus Bifidobacterium, B. longum subsp. Infantis, B. breve, B. bifidum,
and B. longum subsp. longum, known to be the main HMO-utilizing taxa associated with
breastfeeding, were among the most enriched species after 1 month of HMO EHF feeding
compared to controls [10].

In the LE cohort, in which infants were already exposed to solid food before enrol-
ment, HMO-mediated changes in the gut microbiome were less pronounced. Significant
differences in alpha diversity and FCT distribution between feeding groups could only be
demonstrated at 12 months of age, suggesting that a longer intervention may be required
to induce an effect in this population. In the LE cohort, bifidobacteria abundance tended
to increase in the HMO group already after 1 month, although this trend did not pass the
significance threshold at the species or genus level and disappeared at later visits. Several
aspects of dietary intake may explain these observations. The frequency of formula feeding
is generally reduced with age; therefore, the overall formula intake and HMO exposure
are lower in infants in the LE cohort. Intake of dietary fibers from the complementary diet
is likely to confound the HMO effect due to an increased capacity of the microbiome to
ferment fiber. As a result, the effects of HMO may be less clear in the LE cohort compared
to infants who received the HMO-supplemented EHF before 3 months of age as part of
exclusive formula feeding.

Exclusively breastfeeding for 4 to 6 months is known to decrease fecal microbial di-
versity, delay the maturation of the gut microbiome, and promote the enrichment of HMO-
utilizing-bifidobacteria [5]. The latter mediates beneficial health outcomes, including the
support of early immune maturation, protection against infection, and potentially a lower
incidence of allergic manifestations [13,33,34]. In recent systematic reviews, a low abundance
of Bifidobacterium during the first months of life was described as a consistent feature related
to the risk of developing allergies [35,36]. In addition, bifidobacteria act as a symbiotic con-
tributor to microbial colonization through the production of metabolites, such as acetic acid,
which cross-feed other beneficial microbes, including butyrate producers [34,37]. In our study,
there were no significant differences in acetic acid concentrations between feeding groups, but
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HMO feeding for 1 month maintained higher fecal acetic acid levels compared to baseline
levels, while it tended to decrease in the control group.

In our cohort of infants with CMPA, HMO feeding was able to reconstitute microbiome
patterns closer to those seen in breastfed infants, especially when HMOs were introduced
during exclusive feeding with the HMO-supplemented formula. These findings are con-
sistent with other studies in healthy-term infants. Berger et al. reported that formula-fed
infants receiving 2′-FL and LNnT exhibited higher levels of Bifidobacterium and lower
levels of Escherichia and unclassified Peptostreptococaceae than control formula-fed infants
at 3 months of age, with the overall microbial composition being closer to breastfed in-
fants [14]. Dogra et al. identified that enrichment of B. longum subsp. infantis and increased
levels of bifidobacteria-derived acetic acid were factors contributing to the protective effect
of 2′-FL and LNnT against LRTI in infancy [15]. Additional metabolic pathways have
been identified, including gamma-glutamylation and acetylation of amino acids, altered
by the HMO formula feeding [16]. In our study, the microbial ecosystem of the EHF-fed
infants with CMPA likely differed from that of healthy infants. In addition, since differ-
ent protein content can affect the gut microbial ecosystem [38], the microbiome-mediated
effect of HMO on infant health may be different in the context of EHF and reference for-
mulae. Nevertheless, we showed that HMO supplementation had a positive impact on
the gut microbiome and the gut microbial metabolism of EHF-fed infants with CMPA.
These findings suggest that HMOs are critical for the developmental maturation of the
gut microbiome in healthy infants, as well as a restoration of a Bifidobacterium-depleted,
dysbiotic gut microbiome in infants with CMPA.

In the EE cohort, HMO intake was negatively associated with fecal metabolites derived
from the bacterial oxidative catabolism (Ehrlich pathway) of branched-chain amino acids
(BCAAs) and aromatic amino acids (i.e., isobutyric acid, isovaleric acid, phenylacetic acid,
3,4-hydroxyphenylacetic acid, and 4-cresol sulfate). These reactions are characterized by the
oxidation of the amino acid as an electron donor into a volatile carboxylic acid. Oxidative
metabolisms provide energy in the form of adenosine triphosphate (ATP) through substrate-
level phosphorylation and are often coupled with reductive metabolic pathways to maintain
the redox balance [37,39,40]. As our targeted analytic panel did not include the reductive
amino acid metabolites, we were unable to assess if the reductive amino acid metabolism
was equally affected by HMO-supplemented EHF feeding. Nevertheless, these results
indicate the downregulation of energy-forming amino acid catabolism. There is compelling
evidence that the presence of fermentable carbohydrates, including HMO, in the proximal
colon reduces bacterial amino acid catabolism and instead promotes biosynthetic pathways to
meet bacterial requirements for organic N-containing compounds [41,42]. It is also important
to note that the dietary protein content in the test group was slightly lower than in the control
group (2.5 g/100 kcal vs. 2.2 g/100 kcal), which may have contributed to fewer amino acids
reaching the lower gastrointestinal tract and being metabolized by the microbiome.

Feeding an HMO-supplemented EHF reduced the abundance of several amino acid
fermentation catabolites, particularly in the EE cohort. Importantly, some metabolites, such
as phenols, ammonia, and hydrogen sulfide, can be toxic to colonocytes and may con-
tribute to mucosal inflammation [43,44]. For example, the uremic toxins 4-cresol and 2- or
3-hydroxyphenylacetic acid formed via bacterial tyrosine and phenylalanine fermentation
can have negative mucosal and systemic effects [45,46]. A reduction in fecal toxic metabo-
lites may therefore contribute to maintaining mucosal and systemic immune balance.

We found evidence of HMO-mediated metabolic remodeling of bile acid profiles,
which was more marked in the EE cohort. Bile acids play a central role in nutrient diges-
tion, fat absorption, and cholesterol metabolism. Primary bile acids are synthesized from
cholesterol, conjugated with glycine or taurine in the liver, and secreted into the bile before
entering the enterohepatic circulation. A large proportion (80–90%) of the intestinal bile
acid pool is reabsorbed in the ileum [47]. A small amount of unabsorbed conjugated pri-
mary bile acids enters the large intestine and is further transformed by bacteria before being
reabsorbed in the colon. Bacterial bile salt hydrolase (BSH) activity removes the glycine
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and taurine conjugate and produces unconjugated bile acids. This allows other bacteria to
convert these primary bile acids into secondary bile acids by 7α-dehydroxylation [48]. The
microbiome is still immature during early infancy, and primary bile acids are maintained at
high levels. An increase in microbial diversity and richness which is commonly observed
from 6 months of age, is associated with an increase in secondary bile acids [47,49]. In
our study, bacterial bile acid deconjugation was maintained at a stable level over time in
the HMO group, while it decreased in the control group, suggesting an HMO-mediated
upregulation of BSH activity. BSH expression is found across all major phyla, neverthe-
less, a greater abundance of bifidobacteria has been linked with an upregulation of BSH
activity and increased levels of deconjugated bile acids [50,51]. The increased expression of
bacterial BSH activity may be associated with beneficial effects on inflammation, hyperc-
holesterolemia, and digestive function, as well as a reduced incidence of Clostridiodes difficile
infection and symptomatic atopic dermatitis [52–55].

Not all prebiotics and types of fiber have the same effect on bile acid conjugation
and related outcomes. In contrast to HMO, feeding of inulin has recently been shown to
increase microbial BSH-derived unconjugated bile acids and promote type 2 inflamma-
tion [56], while specific secondary bile acids, such as 3β-hydroxydeoxycholic acid, increased
regulatory T-cell populations [57]. Further studies are required to delineate the effect of
BSH and specific secondary bile acids on mucosal immunity. In our study, we found a
lower fecal concentration of the secondary bile acid dehydrocholic acid after 3 months
of HMO-supplemented EHF feeding. Dehydrocholic is produced by oxidation of the hy-
droxyl group of cholic acid and produces various secondary bile acids [58]. It is unknown
whether lower concentrations of secondary bile acids in stool reflect a higher re-uptake or
lower production. Primary and secondary bile acids are signaling molecules activating two
classes of receptors, the nuclear receptors and the G protein-coupled receptors. The role of
bile acids in maintaining energy homeostasis in the liver and regulating hepatic diseases,
cardiovascular diseases, or inflammatory bowel disease has been reported [48]. Growing
evidence also shows that bile acids may serve as a mediator of inflammation and allergic
diseases. Infants with food allergies exhibited an altered profile of secondary bile acids in
comparison to infants suffering from asthma [20,59]. Secondary bile acids and derivatives
were found to regulate multiple T cell responses by activating, for instance, the retinoic
acid signaling in mucosal dendritic cells [20]. Changes in the processing of the bile acids
by the microbiota may be an avenue to manage CMPA symptoms. However, the exact
mechanisms of actions linking bile acids and allergic manifestations remain to be eluci-
dated. Plasma bile acid profiling is suggested for future studies investigating the role of
specific secondary bile acids in infancy. Of note, an age or developmental maturity adapted
microbial-infant metabolic crosstalk seems critical for an effective immune competence
later in life infant [60].

The present analysis of the microbiome and metabolome has several limitations. Due
to a relatively small number of stool samples from study subjects, the statistical power of
the analysis was limited. As subjects were enrolled at different ages, the high variability
in age at each time point limited the ability to identify HMO effects due to confounding
by age and complementary diet. This issue was partially mitigated by stratifying the
population in EE and LE cohorts. However, this stratification further limited the statistical
power. Nevertheless, we identified a robust HMO-mediated microbial signature that was
consistent with existing literature and in accordance with the changes in the fecal metabolic
profile, particularly in the EE cohort. The metabolomic analysis was carried out using
a targeted approach that allowed us to accurately quantify metabolites from a variety
of pathways. However, the assessment of amino acid metabolism was limited as some
metabolites were not included in the initial selection of target metabolites.

In conclusion, the microbiome analysis in the present study of infants with CMPA demon-
strated that the supplementation of a whey-based EHF with 2′-FL and LNnT enriched the
microbiome with HMO-utilizing bifidobacteria and slowed the progression of the microbiome
composition towards an adult-type pattern. HMO supplementation partially reversed the
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dysbiosis common to infants with CMPA and shifted the microbiome composition closer to
a pattern typical of breastfed infants. Specific HMO-mediated changes in fecal amino acid
degradation and bile acid conjugation were identified in this cohort, with the greatest effect
seen in infants who commenced the HMO-supplemented EHF before 3 months of age. The
clinical significance of these observations in the context of a reduced incidence of infections
and potentially other health benefits requires further investigation.

4. Materials and Methods
4.1. Study Design and Participants

This controlled, double-blind, randomized, multicenter, interventional clinical trial
of two parallel formula-fed groups (Registration: NCT03085134) was conducted to as-
sess the noninferiority in weight gain per day in infants with CMPA being fed an exten-
sively hydrolyzed formula (EHF) supplemented with two human milk oligosaccharides
(HMO), compared to that of a control EHF formula. Full-term, non-breastfed infants aged
0–6 months with physician-diagnosed CMPA were enrolled. Further details of the study
design and population were published by Vandenplas et al. [29].

4.2. Interventions

Infants were randomized to either receive a commercially available 100% whey-based
EHF with a protein content of 2.47 g/100 kcal and without HMO (Althéra®, Nestlé Health
Science, Vevey, Switzerland) or a similar test formula with a reduced protein content of
2.20 g/100 kcal and supplemented with 2′-FL (target concentration: 1.0 g/L) and LNnT
(target concentration: 0.5 g/L). As described by Vandenplas et al., the HMO-containing
infant formulae had a slightly lower protein content in line with the recent developments
in infant formula design which aim to reduce the risk of excess weight gain [29]. Both
formulas contained lactose at 3.8 g/100 mL reconstituted formula (about 52% of total
carbohydrates) and had a similar micronutrient composition. Treatment allocation was
blinded, and both formulas were indistinguishable by taste and appearance.

4.3. Stool Collection

Stool samples were collected from 132 infants at baseline (V0), 1 month (V1, n = 122),
and 3 months (V3, n = 120) from enrollment, as well as at 12 months of age (V6, n = 116).
Varying numbers of samples per timepoint were analyzed due to early withdrawal from
the trial or missing samples. Due to the large age heterogeneity at baseline, infants were
stratified into early enrollment (EE; aged ≤90 days at baseline; n = 60) or late enrollment
(LE; aged >90 days at baseline; n = 72). Sample sizes of the EE and LE cohorts and time
points are summarized in Supplementary Figure S2.

4.4. Fecal DNA Extraction and Ecological Measures

Microbial DNA was extracted from frozen feces, purified, and shotgun sequenced with
2 × 150 bp sequencing, as described previously [61–63] (median reads/sample: 21 × 106,
range: 10.8 × 106–38.1 × 106). Taxonomic relative abundances were calculated using
the metagenomic species (MGS) approach, which enables quantification of both known
characterized and uncharacterized microbial species [64]. Full details are outlined in the
Supplementary Methods [65,66]. Beta diversity as Bray–Curtis dissimilarity was calculated
using the vegan R package. A phylogenetic tree connecting the MGSs was generated using
previously identified conserved genes (Supplementary Methods) [67,68]. Alpha diversity
as Faith’s phylogenetic diversity (PD) [69,70] was calculated using this tree with the picante
R package. All distances and alpha diversity measures were calculated using rarefied
abundances (see details in Supplementary Methods) [71–76].

4.5. Fecal Community Type Clustering and Visualization

Fecal community types (FCT) clustering of all 481 samples were generated by Dirichlet
multinomial mixture (DMM) modeling [77], using non-rarefied genus-level counts with
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the Dirichlet multinomial R package, which assigns each sample to exactly one FCT. DMM
models were fitted using two to ten components, and the analysis was repeated ten times.
The optimal clustering was reached by a model using 5 components, selected based on
the minimal Laplace approximation to the model evidence. The resulting 5 clusters at
the genus level (genus cluster, FCT) were named to imply their order or progression
(FCT1 > FCT2 > FCT3 > FCT4 > FCT5).

The temporal development of the infant’s microbiome was tracked with a transition
model of the FCT clusters by an approach adapted from Stewart et al. [2], with modifications
to accommodate the different sampling schedules of this trial. Each sample was assigned to
an age group (rounded to the nearest month). In contrast to Stewart et al., we included all
data points, even if two consecutive samples were in the same age group or skipped over
an age group. Where only transitions from one age group to the immediate next age group
were included (i.e., from t = i to t = i + 1), transitions from one age group to any of the
following age groups were also included (i.e., from t = i to t > i + 1; e.g., from t = 2 months
to t = 4 months). Furthermore, infants were allowed to be considered twice for a given age
group to accommodate cases where the difference between the V0 and V1 samples was
<30 days (resulting in self-loops).

4.6. Statistical Analysis of Microbiome Data

All statistical tests were run using R software (v. 4.0.3, R Core Team (2022)). Charts
were generated using the ggplot2, ggrepel, pheatmap, ComplexHeatmap, survminer, and
igraph R packages.

Alpha diversity indexes and taxonomical relative abundances were compared between
treatment groups using two-sided Wilcoxon–Mann–Whitney tests and Cliff’s delta as effect
size, using the wilcox.exact function from the exactRankTests R package and the cliff.delta
function from the effsize R package, respectively.

To investigate the time to reach a given or later evolutionary microbiome state, the
time of the event was defined as the age at the earliest visit where the infant was observed
to have the FCT in question or a later FCT. As many infants were not observed in all
clusters (due to in-frequent sampling or biology), the time of the event was defined as
the age at the earliest visit where the infant was observed to have the FCT3 or later FCT,
e.g., for ‘Proportion in FCT2 or lower’, time of event would be the earliest visit where
the infant had an FCT3, FCT4, or FCT5 community type. Differences in FCT transition
probabilities between treatment groups were tested for FCT2, FCT3, FCT4, and FCT5 using
Cox proportional hazards regression and global statistical significance reported by the score
log-rank test using the survival R package. Data were right- and interval censored, where
the intervals between visits were long and of variable length (especially towards the end),
resulting in uncertain estimates of the actual time of progression from one cluster to the
next. The seven infants with only a V6 sample were excluded from this analysis.

Finally, a taxon set enrichment analysis (TSEA) was performed at the family and genus
level (full details are outlined in the Supplementary Methods).

4.7. Metabolomics of Fecal Samples and Statistical Analysis of Metabolomics Data

Targeted metabolomics analysis was performed on stool samples of 84 infants (control
mean age: 102 days, test mean age: 104 days at baseline) collected at V0, V1, V3, and V6 to
measure bile acids, other host-gut microbial metabolites, lipids and HMO. The samples
were extracted and prepared according to previously published methods [78–80]. Infor-
mation on chemicals and reagents is detailed in Supplementary Materials and Methods.
For the bile acid analysis, the calibration curve samples were prepared in the blank matrix
and processed in the same way as real biological samples. Ultra-performance liquid chro-
matography coupled to tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY
UPLC-Xevo TQ-S, Waters Corp., Milford, MA, USA) was used to quantitate 43 bile acids
based on previously published protocols [78,81]. Data acquisition was performed using
MassLynx version 4.1, and bile acid quantification was performed using the TargetLynx
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applications manager version 4.1 (Waters, Milford, MA, USA). For other host-gut microbial
metabolites and lipid analysis, samples were analyzed using a previously published tar-
geted metabolite assay method using UPLC-MS/MS [62]. This second method enabled the
quantification of a total of 91 metabolites, including amino acids and derivatives, carboxylic
acids, fatty acids, hydroxy acids, keto acids, aromatics, and lipids. For the quantitation
of HMO, including 2′-fucosyllactose, lacto-N-neotetraose, free lactose, and free fucose,
samples were analyzed according to a previous method with minor modification using
UPLC-MS/MS [80].

Metabolomic data for the EE and LE cohorts were analyzed separately using a multi-
variate approach in SIMCA (SIMCA-P16, SARTORIUS STEDIM, Umea, Sweden). Partial
least squares regression (PLS) and discriminant analysis (PLS-DA) were employed to model
either age, treatment effect, or both at each time timepoint (V1, V3, or V6) or at combined
time points (V1,V3,V6 or V3,V6). The model robustness was evaluated based on the value
of the cross-validation parameter (Q2Y) and permutation tests. The model predicting age
and treatment and combining V3 and V6 time points was the most robust and allowed
us to maximize the metabolic differences between the control and test groups. The vari-
able importance in projection (VIP) score was calculated for each feature. The VIP sore
corresponds to the weighted sum of squares of the PLS weights, considering the amount
of explained Y-variance in each component. The variable with a VIP > 1 is considered
significant as its influence on the explanation of the outcomes is above average.

Univariate Wilcoxon–Mann–Whitney (WMW) tests on metabolites were also per-
formed at each time point. Due to the low sample size and the exploratory nature of this
study, no adjustment for the false discovery rate was applied. The metabolites were consid-
ered the most important in the treatment group discrimination if they had VIP score > 1,
|PLS coefficient (p(corr))| > 0.2, and WMW p-value < 0.05.

To test the hypothesis that HMO supplementation exerts an effect on fecal bile acids
and SCFA content over time, the differences in the abundance of SCFA and unconju-
gated/conjugated bile acid ratio between a given time point (V1, V3, or V6) and baseline
(V0) were evaluated using WMW tests in the control and the test group individually.

4.8. Metagenomics—Metabolomics Data Integration

Metabolites are significantly different between control and HMO at V3 or V6, and
bile acid ratios affected by HMO supplementation over time were selected (n = 16). KOs
corresponding to the key enzymes involved in the same metabolic pathways (i.e., BCAA,
aromatic amino acid, and bile acids metabolism) were identified using the KEGG database
(version 102.0) and mapped in our dataset.

Interdomain correlation between KO and metabolite abundances: The analysis was based
on all V3 and V6 samples from EE infants with available metagenomic and metabolomic
information (n = 70). KOs and metabolites that were detected in <3 of the included 70 samples
were filtered out. Pairwise interdomain correlations between the normalized abundances of
the remaining 17 KOs and 16 metabolites were evaluated by Kendall correlation (two-sided)
using the Kendall R package. The Benjamini–Hochberg procedure was used to control the false
discovery rate at 10% (concurrently on the entire matrix of all 272 pairwise combinations of
metabolites and KOs). MGSs and metabolites with at least one significant correlation (FDR
< 10%) were displayed in a heatmap (Figure 5). The rows and columns of the heatmap were
ordered based on hierarchical clustering of the Kendall correlation coefficient (Tau) values
using Euclidian distance as a dissimilarity measure and Ward clustering.

Association between metabolites/KOs and HMO treatment: For the V3 and V6 visits
separately, each of the 16 metabolites and 17 KOs was compared between HMO-treatment
groups (control vs. test) with two-sided Mann–Whitney U tests and Cliff’s delta as effect
size. Each comparison was based on all available samples from EE infants for the given
visit (i.e., KO comparisons included samples without matching metabolomic information).
The Benjamini–Hochberg procedure was used to control the false discovery rate at 10% for
each visit individually.
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Association between metabolites/KOs and FCT clusters: For the V3 and V6 visits
separately, each of the 16 metabolites and 17 KOs was tested for association with progressive
FCT cluster distribution with Kendall correlation, where the FCT clusters were encoded
as ordered factors, with FCT1 = 1, FCT2 = 2, and so on. Each comparison was based on
all available samples from EE infants for the given visit (i.e., KO comparisons included
samples without matching metabolomic information). The Benjamini–Hochberg procedure
was used to control the false discovery rate at 10% for each visit individually.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms241411422/s1.
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