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ABSTRACT
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive 

oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress 
is a result of imbalance between the production of reactive oxygen and the biological 
system’s ability to detoxify the reactive intermediates or to repair the resulting 
damage. Mounting evidence has implicated oxidative stress in various physiological 
and pathological processes, including DNA damage, proliferation, cell adhesion, and 
survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme 
family with peroxidase activity whose main biological roles are to protect organisms 
from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen 
SHUR[LGH��&XUUHQWO\����VXE�PHPEHUV�RI�*3[V�KDYH�EHHQ�LGHQWL¿HG�LQ�KXPDQV��DOO�
capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of 
SXEOLFDWLRQV�KDV�GHPRQVWUDWHG�WKDW�*3[V�KDYH�VLJQL¿FDQW�UROHV�LQ�GLϑHUHQW�VWDJHV�RI�
carcinogenesis. In this review, we will update recent progress in the study of the roles 
of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute 
to the development and advancement of improved cancer treatment models.

INTRODUCTION

Oxidative stress is essentially an imbalance among 
reactive oxygen species (ROS), free radicals (FR), and 
endogenous antioxidant defense mechanisms in the cell. 
Cellular molecules and components will ultimately lose 
cells viability by severe oxidative damage [1-2]. 

 Oxidative stress is involved in various physiological 
processes, including cell adhesion, proliferation, DNA 
damage, and survival. Oxidative stress is also involved in 
a large number of pathological states, such as Alzheimer’s 
disease [3-5], Parkinson’s disease [6-7], atherosclerosis 
[8-9], heart failure [10-11], fragile X syndrome [12], 
myocardial infarction [13], Sickle cell disease [14], 
hepatic encephalopathy [15-16], as well as carcinogenesis 
[17-20]. Glutathione peroxidases (GPxs)  is an enzyme 
family which has the ability to reduce free hydrogen 

peroxide to water and reduce lipid hydroperoxides to their 
corresponding alcohols and its main biological roles are 
to protect organisms from oxidative stress damage [21-
��@��*3[V� LQFOXGH� ¿YH�PHPEHUV� DQG� KDYH� EHHQ� IRXQG�
LQ� GL൵HUHQW� WLVVXHV� RI� WKH� ERG\� DQG� FHOO� IUDFWLRQV��$V�
expected, GPxs, a major defender against oxidative stress 
were also reported to be involved in Parkinson’s disease 
[25-27], Alzheimer’s disease [28-30], atherosclerosis [31-
32], myocardial infarction [33-34], heart failure [35-36], 
Sickle cell disease [37], as well as carcinogenesis [24, 38-
39]. In this review we analyzed the role and function of 
GPxs in mammalian cells, in the regulation of stem cells 
and cancer stem cells (CSC), discussed the GPxs-mediated 
signaling pathways and their potential as biomarkers 
and drug targets. Additionally, we discussed molecular 
mechanisms of GPxs in CSC, carcinogenesis, as well as 
its crosstalk with other signaling pathways.
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EXPRESSION AND FUNCTION OF GPXS 
IN MAMMALIAN CELLS

GPxs in vertebrates are comprised of 8 sub-
members, i.e. GPx 1-8. The molecular mass of the active 
SXUL¿HG�PDPPDOLDQ�*3[���D�WHWUDPHU�RI�LGHQWLFDO�VXEXQLWV�
of ~22-23 kDa, has been estimated to be between 83 and 
95 kDa [40-42]. GPx1 is ubiquitously expressed and 
predominantly found in the cytosol [43] and mitochondria 
[44]. Recently, exosome-derived GPx1 was also found 
to be required for the recovery of hepatic oxidant injury 
>��@��'L൵HUHQW�ORFDWLRQV�RI�WKH�*3[��PD\�FRUUHVSRQG�WR�
GL൵HUHQW� IXQFWLRQV�� L�H��*3[�� LQ� F\WRVRO�PD\� VFDYHQJH�
hydrophilic peroxide species such as H2O2 [43], whereas 
in mitochondria it may protect mitochondrial DNA 
from oxidative damage [44, 46]. GPx1 is considered 
as a major antioxidant enzyme within the GPx family, 
although GPx1-/- mice apparently were healthy, fertile and 
showed no increased sensitivity to hyperoxia and could 
compensate for mild oxidative stress [47]. 

 GPx2 is detected in the gastrointestinal system of 
mammals and also expressed in human livers [48-49]. Its 
expression pattern suggests that major function of GPx2 
is against ROS derived from the gut. GPx2 knockout mice 
do not develop an aberrant phenotype before birth, but 
GPx2 gene is able to make up for the lack of GPx1 gene 
expression in the ileum epithelium [50] .

 GPx3, mainly expressed in the proximal tubuli of 
the kidney, is a secreted plasma protein and was found in 
PRVW�H[WUDFHOOXODU�ÀXLGV�>������@��*3[�����PLFH�VKRZ�QR�
abnormal phenotype throughout their life times, and GPx3 
is not involved in selenium metabolism [52]. However, 
GPx3 may have glutathione peroxidase activity in the 
FRUWLFDO�SHULWXEXODU�VSDFH��VLQFH�WKH�VSHFL¿F�ELQGLQJ�RI�D�
large pool of GPx3 is seen in the basement membranes in 
the kidney cortex [52]. 

� 7KUHH� GLVWLQFW� *3[�� LVRIRUPV� ZLWK� GL൵HUHQW�
subcellular localizations are detected in mouse and rat: 
mitochondrial GPx4 (mGPx4), cytosolic GPx4, and 
nuclear GPx4 (nGPx4) [53]. Cytosolic GPx4 is implicated 
for cell survival and embryonic development, while 
nGPx4 and mGPx4 have been essential in male fertility 
and spermatogenesis [53]. The key features of GPx4 
function are its dual anti-oxidative and anti-apoptotic 
activities [54]. In developing embryos GPx4 expression 
correlates with areas of reduced apoptosis in developing 
limbs [55]. In contrast to GPx1-3, all GPx4 knockout 
VWUDWHJLHV�IDLO�WR�UHSURGXFH�YLDEOH�KRPR]\JRXV�R൵VSULQJ�
[56-57].

 GPx5, the closest homologue to GPx3, is detected 
in the epididymis of reproductive tract in the mammalian 
male, and is androgen-regulated [58]. While the 
NLQHWLFV�DQG�VXEVWUDWH�VSHFL¿FLWLHV�RI�*3[��DUH�QRW�IXOO\�
understood, the function related to the maintenance of 
sperm DNA integrity [59]. Thus, GPx5 might be a potent 
antioxidant scavenger that protects spermatozoa from 

oxidative injuries that can potentially compromise their 
integrity and embryo viability [59]. 

 GPx6, as a putative odorant-binding and 
PHWDEROL]LQJ�HQ]\PH��ZDV�LGHQWL¿HG�E\�LQ�VLOLFR�DQDO\VLV�
[60]. Its detection appears to be restricted to the embryos 
and the Bowman’s glands [61]. Since GPx6 has not been 
SXUL¿HG��WKH�NQRZOHGJH�RQ�*3[��LV�YHU\�OLPLWHG��

 GPx7 with a cysteine instead of Sec in the catalytic 
center is a cytoplasmic protein with molecular mass of 
approximately 22 kDa [62]. GPx7 has little glutathione 
peroxidase activity in vitro [62] and is detected in the 
lumen of the endoplasmic reticulum [63]. Recently, GPx7 
ZDV�LGHQWL¿HG�DV�D�VWUHVV�VHQVRU�WKDW�WUDQVPLWV�R[LGDWLYH�
stress signals and it is critical for releasing excessive ER 
stress by increasing GRP78 chaperone activity [64]. 

 GPx8 as a novel member belonging to the GPx 
IDPLO\�� KDV� EHHQ� LGHQWL¿HG� LQ� D� SK\ORJHQHWLF� DQDO\VLV�
in amphibia and mammalia [65]. GPx8 is a membrane 
protein, lung-abundant enzyme and is detected in 
endoplasmic reticulum [63, 66]. However, little is known 
about its role. 

 As described above, the functions of most of 
these proteins are not completely known, but they may 
all be capable of reducing hydroperoxides: ROOH 
�� �*6+ĺ52+� �� +2O + GSSG. Thus, a common 
function of GPxs should be related to the metabolism of 
hydroperoxides. 

GPXS IN THE REGULATION OF STEM 
CELLS

Stem cell (SC) research has obtained increasing 
attention in the past decade due to their invaluable 
clinical potentials to cure genetic disorders, degenerative 
diseases, and even cancers. SCs present in all multicellular 
organisms, can self-renew to produce more SCs and can 
divide and GL൵HUHQWLDWH into diverse specialized cell types 
[67]. Although considerable studies have been performed 
in elucidating the molecular mechanisms in the regulation 
RI� VHOI�UHQHZDO� DQG�GL൵HUHQWLDWLRQ� RI� DOO� NLQGV� RI�6&V��
UHODWLYHO\�OLWWOH�H൵RUW�KDV�EHHQ�PDGH�LQ�LQYHVWLJDWLQJ�WKH�
metabolic aspects of SCs [67-68]. 

 Since both embryonic SCs and adult SCs are 
VRXUFHV�RI�GL൵HUHQW�W\SHV�RI�PDWXUH�FHOOV��6&V�PXVW�QHHG�
VSHFL¿F�SURWHFWLRQ�IURP�WKH�ORQJ�WHUP�H൵HFWV�RI�R[LGDWLYH�
damage and ROS. The intersection of SC function and 
ROS was proven from the study of mice that lack the 
function of the gene ataxia telangiectasia mutated (Atm). 
Most Atm knockout mice die at early, whereas a small 
percentage of mice survive [69]. Further analysis showed 
WKDW�$WPí�í�KHPDWRSRLHWLF�6&V��+6&��KDG�D�VHYHUH�GHIHFW�
in self-renewal and a marked increase in ROS levels [69]. 
Analysis of HSCs from conditional knockout of FoxO1, 
FoxO3, and FoxO4 mice showed an increase in ROS 
levels and a decline in long-term repopulating activity 
>��@��,Q�D�UHFHQW�VWXG\��3UGP���GH¿FLHQF\�ZDV�SURYHQ�WR�

Georges MOUTON
EXPRESSION AND FUNCTION OF GPXS IN MAMMALIAN CELLS

Georges MOUTON
GPXS IN THE REGULATION OF STEM CELLS

Georges MOUTON
GPxs in vertebrates are comprised of 8 sub- members, i.e. GPx 1-8. The molecular mass of the active purified mammalian GPx1, a tetramer of identical subunits of ~22-23 kDa, has been estimated to be between 83 and 95 kDa

Georges MOUTON
GPx1 is ubiquitously expressed and predominantly found in the cytosol

Georges MOUTON
and mitochondria

Georges MOUTON
Different locations of the GPx1 may correspond to different functions, i.e. GPx1 in cytosol may scavenge hydrophilic peroxide species such as H2O2

Georges MOUTON
whereas in mitochondria it may protect mitochondrial DNA from oxidative damage

Georges MOUTON
GPx1 is considered as a major antioxidant enzyme within the GPx family,

Georges MOUTON
the functions of most of these proteins are not completely known, but they may all be capable of reducing hydroperoxides: ROOH + 2GSH→ROH + H2O + GSSG. Thus, a common function of GPxs should be related to the metabolism of hydroperoxides.



Oncotarget80095www.impactjournals.com/oncotarget

lead to changes in the levels of ROS, depletion of SCs, 
altered cell-cycle distribution in the haematopoietic and 
nervous systems and an increase in ROS levels [71]. 
Prdm16 is a transcription factor that Prdm16 binds to the 
Hgf promoter, and Hgf expression declined in the absence 
of Prdm16 [72-74]. In neural SCs, Prdm16 binds to the 
Hgf promoter, and Hgf expression declined in the absence 
of Prdm16 [71]. Thus, Prdm16, promotes SC maintenance 
and self-renewal in multiple tissues, partly by modulating 
R[LGDWLYH� VWUHVV�� $OO� WKHVH� ¿QGLQJV� LQYROYLQJ� $WP��
FoxO, as well as Prdm16 indicate that there is a strong 
correlation between the maintenance of SC function and 
ROS homeostasis.

 In recent years, the role of GPxs in the regulation 
RI� 6&V� LV� ¿QDOO\� EHLQJ� UHFRJQL]HG�� *3[�� LV� DQ�
important antioxidant enzyme in preventing the harmful 
accumulation of intracellular hydrogen peroxide. Although 
GPx1-/- mice were apparently healthy [47], GPx1 was 
still considered to be the most important member of 
GPx family in modulating redox-mediated responses 
and cellular oxidant stress, as well as in the regulation 
of SCs [21, 75]. Localization of GPx2 in the intestinal 
FU\SW� HSLWKHOLXP� SRLQWV� WR� D� VSHFL¿F� IXQFWLRQ� RI� WKLV�
particular GPx in the gastrointestinal SC regulation. Loss 
of GPx2 led to an increase in apoptotic cells at colonic 
crypt bases, an area critical for the self-renewal of the 
intestinal epithelium [76]. These results indicate a role for 
GPx2 in regulating intestinal mucosal SC homeostasis. 

Recently, GPx3 was demonstrated that it is essential for 
human skeletal muscle precursor cell survival [77]. In an 
early report, in normal HSCs without function of GPx3 
were much less competitive in vivo than in control cells. 
While HSCs overexpressing GPx3 with overexpression of 
the self-renewal genes Prdm16 or Hoxb4 boosted GPx3 
H[SUHVVLRQ� ZHUH� VLJQL¿FDQWO\� PRUH� FRPSHWLWLYH� WKDQ�
control cells [78]. As mentioned above, GPx4 is essential 
for embryonic SC development andsurvival, especially in 
spermatogenesis and male fertility [53], and GPx5 may 
also have a role in the mammalian male SC regulation 
[58]. So far, there has been no report about the role of 
GPx6, 7 and 8 in SC regulation. 

GPXS IN SEVERAL TYPES OF TUMOR

Changes in GPx levels in several types of tumor 
have been reported. However, it remains unknown which 
of the GPx level changes are causative factors in caner 
progression. The role of GPx1 in tumor and its potential 
future therapies has been recently reviewed and discussed 
[21, 61]. GPx1 was reported to prevent oxidative DNA 
mutations, thus GPx1 may prevent tumorigenesis 
[79]. Overexpressed GPx1 reduced growth of tumors 
LQGLFDWHV� WKDW� LW� KDV� D� UROH� RI� WKH� SURWHFWLYH� H൵HFW� LQ�
tumorigenesis [80]. GPx1 polymorphism in a number of 
malignancy subjects showed that it may be an important 

Figure 1: GPxs and COX/LOX activity. Mitochondria and NADPH oxidases (NOX) are intracellular sources of H2O2 or other 
hydroperoxides (ROOH). H2O2 and ROOH are reduced by all GPx1, 2, and 4 and also by GPx3. Hydroperoxides activate COX-2, which 
in principle, is inhibited by all GPxs, preferentially; however, by GPx4. COX-2 forms PGE2, which in an autocrine loop can induce the 
H[SUHVVLRQ�RI�&2;���WR�IXUWKHU�LQFUHDVH�3*(��SURGXFWLRQ�WR�SURPRWH�FDQFHU�FHOO�SUROLIHUDWLRQ��LQYDVLRQ��VHOI�UHQHZDO��DQG�GL൵HUHQWLDWLRQ�
of CSCs. 
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factor modifying oxidative stress response [81-86]. The 
dual role of GPx2 in tumorigenesis has been reviewed 
recently [38, 61]. Overexpression of GPx2 was observed 
in several tumors including colorectal cancer [87-88], 
Barrett’s esophagus carcinoma [89-90], and lung cancer 
[91], indicating that GPx2 may be an oncogene. However, 
GPx2 was also observed to be down-regulated in prostatic 
intraepithelial neoplasia [91], indicating GPx2 may play a 
more complex role in tumorigenesis. GPx3 is considered 
to be a novel tumor suppressor, since hypermethylation 
of the GPx3 was detected in tumor samples from patients 
with Barrett’s esophagus [92-94], endometrial [95] and 
prostate cancer [96], and down-regulation was generally 
correlated with worse prognosis. Since changes in 
GPx3 hypermethylation are reversible, drug treatment 
through demethylation may be a useful strategy to delay 
carcinogenesis and progression. In fact, the expression of 
GPX3 mRNA and protein was restored in several types of 
cancer cells after treatment with 5-aza-2’-deoxycytidine 
and [94, 97-98]. This method may bring new direction 
and potential for cancer treat ment through gene-targeted 
therapy. GPx4 is also considered to be a tumor suppressor, 
since it was down-regulated in pancreatic [80] and breast 
cancer [99]. In addition, GPx4 overexpression reduced 
¿EURVDUFRPD�FHOO�JURZWK�>���@��6R�IDU��WKHUH�LV�QR�UHSRUW�
on the role of GPx5, 6, 7 and 8 in tumorigenesis. 

GPXS IN CANCER STEM CELLS

Cancer cells are believed to originate from a 
small subpopulation of cells that have a high capacity of 
DEHUUDQWO\�VHOI�UHQHZDO�DQG�GL൵HUHQWLDWLRQ��QDPHO\�WXPRU�
initiating cells or cancer stem cells (CSCs) [101-102]. 
CSCs have characteristics associated with normal stem 
FHOOV��VSHFL¿FDOO\�WKH�DELOLW\�WR�FDXVH�WKH�KHWHURJHQHRXV�
lineages or cell types [103-104]. Although their role 
and existence remain controversial, the reports of CSCs 
in mouse tumors also support this concept [105-106]. 
8QOLNH� 6&V�� ZKLFK� KDYH� WKH� GL൵HUHQWLDWLRQ� SURFHVV�
leading to specialized progenies with no proliferative 
potential, CSCs give rise to progenies that do not undergo 
WHUPLQDO�GL൵HUHQWLDWLRQ�EXW�LQVWHDG�H[KLELW�XQFRQWUROOHG�
SUROLIHUDWLRQ�� 7KHUH� DUH� DOVR� GL൵HUHQFHV� LQ� cell-cycle 
properties, mode of division, replicative potential, and 
DNA damage repairs. Through deregulation of the self-
renewal process, CSCs initiate and drive carcinogenesis 
and contribute cellular heterogeneity [107]. Thus, CSCs 
may be a risk biomarker for carcinogenesis [108]. Previous 
studies also demonstrated that CSCs in solid tumors 
that are responsible for tumor initiation, progression, 
metastasis and drug resistance [109-110].

 In comparison with cancer cells or SCs, relatively 
little is known about the ROS in CSCs. Similar to SCs, 
CSCs also contain lower intracellular ROS contents due 
to the increased production of free radical scavenging 
systems [111-112]. In addition, the unchecked ROS 

production may play a role in the leukemic initiation [113-
114]. CSCs might have a high antioxidant capacity to keep 
cellular ROS at a moderate level. Breast CSCs exhibit an 
enhanced ROS defense system and lower levels of basal 
and radiation-induced ROS which may be associated with 
tumorigenicity and resistance to radiation [111]. Recently, 
CD13/Aminopeptidase N, a scavenger enzyme in the 
ROS metabolic pathway [115-116], was demonstrated to 
play a role in supporting the survival of CSCs and that 
there is an EMT-associated reduction in ROS elevation 
[117]. CSCs display an EMT phenotype and are resistant 
to current therapies. More recently, Dong et al showed 
that these phenotypes are stimulated by a metabolic 
switch to glucose metabolism, resulting in decreased ROS 
production in basal-like breast cancer [118].

 Mitochondria and NADPH oxidases (NOX) are 
intracellular sources of H2O2 or other hydroperoxides 
(ROOH). A number of studies have established that H2O2 
and/or ROOH are able to activate cyclooxygenase-2 
(COX-2), one of the cyclooxygenases that catalyze 
D� FULWLFDO� VWHS� LQ� WKH� IRUPDWLRQ� RI� SURLQÀDPPDWRU\�
prostaglandins, e.g., PGE2 [24, 119-120]. COX-2 is over-
expressed in cancer tissues [121-122], as well as in several 
kinds of CSCs [123-125]. PGE2, the main product of the 
&2;��� FDVFDGH� SOD\� D� UROH� LQ� WKH� DFXWH� LQÀDPPDWRU\�
response [126] and in tumor cell proliferation and invasion 
[127]. PGE2 enhances tumor cell proliferation and inhibits 
apoptosis by the activation of pro-survival pathways such 
as the PI3K/Akt or the Ras-MAPK/ERK pathways. PGE2 
also supports cancer cell migration, invasion [126-127], 
and angiogenesis [128-129]. Moreover, PGE2 induces 
CSCs through the Wnt pathway [130-131]. 

 An imbalance or dysregulation of ROS levels may 
generate cells with abnormal growth, therefore potentially 
tumorigenic. Thus, a precise balance between processes 
generating ROS and those decomposing ROS is critical 
for tumor development including CSC self-renewal and 
GL൵HUHQWLDWLRQ��2QH�WLHU�RI�WKH�FHOOXODU�SURWHFWLYH�V\VWHP�
against ROS constitutes the GPx family. Due to the 
VLJQL¿FDQW�UROH�*3[V�SOD\�LQ�PRGXODWLQJ�UHGR[�PHGLDWHG�
responses and cellular oxidant stress, certain members 
of GPx may also play a critical role in CSC self-renewal 
DQG�GL൵HUHQWLDWLRQ�>�����������@��*OLRPD�stem cell lines 
expressing active GPx1 might decrease ROS level in 
Glioma CSCs and resist ROS/RNS-mediated cell death, 
thus creates a carcinoma stem cell niche [134]. Herault 
et al also reported that the expression of ROS scavenger, 
GPx3 associates with the frequency of leukemia stem cells 
(LSCs) in induced leukemias [78]. In addition, GPxs can 
potentially directly decrease H2O2 and/or ROOH level, 
WKHQ� LQDFWLYDWH�&2;���DQG�3(*��DQG�¿QDOO\�PRGXODWH�
CSCs (Figure 1). Recently, the Weinberg’s group showed 
that tumor cells strongly induced the COX-2/microsomal 
prostaglandin-E synthase-1 (mPGES-1)/PGE2 axis in 
MSCs [135]��*3[V��VXFK�DV�*3[��DOVR�VLJQL¿FDQWO\�LPSDFW�
human endothelial cell� DFWLYDWLRQ� DQG�SURLQÀDPPDWRU\�
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cytokine-induced redox signaling [136-138], while 
endothelial cell activation is considered to be able to create 
a niche that helps promote self-renewal of CSCs [139-
140]. Therefore, GPxs can potentially modulate CSCs 
through multiple pathways.

CONCLUSIONS

A lot of knowledge has been learned about the GPx 
family in redox biology and cancer biology since their 
discoveries as crucial antioxidant enzymes that inactivate 
peroxides. GPxs participate in balancing the H2O2 
homeostasis in signaling cascades and in tumorigenesis. 
GPx1, GPx2, GPx3 and 4 are also implicated in self-
UHQHZDO�DQG�GL൵HUHQWLDWLRQ�RI�VWHP�FHOOV�DQG�&6&V�WKURXJK�
multiple pathways. The current challenge is to unravel 
KRZ�WKH�GL൵HUHQW�*3[�PHPEHUV�FDQ�H[HUW�KLJKO\�VSHFL¿F�
biological functions. The functions of some members of 
GPx, such as GPx6, 7 and 8 are still not known and require 
further research.
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