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Manganese superoxide dismutase in
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Abstract
Superoxide and its derived ROS (reactive oxygen species) have been considered for a long time to be
generated as toxic by-products of metabolic events. Although ROS generated in low amounts are able to act
as signalling molecules, ROS appear to also play a major role in aging and in the pathogenesis of diseases
such as inflammation, diabetes and cancer. Since superoxide formation, in particular in mitochondria, is
often considered to be an initial step in the pathogenesis of these diseases, improper function of the
MnSOD (mitochondrial superoxide dismutase; SOD2) may be critical for tissue homoeostasis. However, the
underlying regulatory mechanisms appear to be multiple and this article summarizes current aspects by
which MnSOD can regulate carcinogenesis under various conditions.

Introduction
Apart from being a substrate in various enzyme reactions,
oxygen appears to be also the universal electron acceptor
in electron transfer processes occurring in various aerobic
living species. During these events some of the O2 consumed
is converted into ROS (reactive oxygen species), the
vast majority of which are produced in mitochondria as
unwanted by-products during the combustion of nutrients
[1]. Superoxide (O2

• − ), formed by a one electron reduction
of O2, is often the initial step in ROS generation and serves
as a precursor for the generation of other ROS such as H2O2,
hydroxyl radicals (•OH), peroxynitrite (ONOO− ), HOCl
(hypochlorous acid) and singlet oxygen (1O2) [1].

Although research during the last decades has shown
that ROS generated in lower concentrations can act as
messengers in signal transduction pathways modulating
gene expression in a variety of cell types and under
several biological conditions, superoxide and other ROS
are primarily known to be highly cytotoxic [1]. They
can cause damage to macromolecules such as lipids, DNA
and proteins and play a major role in the pathogenesis
of a number of diseases, including inflammatory disease,
diabetes, cancer, neurodegenerative diseases and other ageing-
related diseases [1]. To avoid damage, cells have evolved
several lines of defence mechanisms, which include non-
enzymatic molecules, and enzymes that dismutate O2

• −

into H2O2 [SODs (superoxide dismutases)] or degrade
H2O2 (catalase, glutathione peroxidases and peroxiredoxins).
Since superoxide formation, in particular in mitochondria,
is often considered to be a crucial process for the
pathogenesis of the above-mentioned diseases, improper
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function of the mitochondrial SOD may be critical for
tissue homoeostasis [2]. In the following, we will therefore
summarize some aspects showing the importance of MnSOD
(manganese superoxide dismutase) in tissue homoeostasis and
carcinogenesis.

SODs: common aspects
SODs are a family of metalloenzymes of which three
isoenzymes are known in mammals. They all catalyse the
dismutation of O2

• − to H2O2 and O2 at a near diffusion
limited rate [3].

The Cu/Zn–SOD, or SOD1, is mainly found in the cytosol
[4], although small amounts have been reported to be found
also in the intermembrane space of mitochondria [5] as well
as in the nucleus [6].

The MnSOD resides predominantly in the mitochondrial
matrix; the protein is encoded by the SOD2 gene and forms a
homotetramer with one manganese ion per subunit. MnSOD
was found also in nucleoid complexes with mtDNA [7] to
protect mtDNA and mtDNA polymerase c from O2

• − -
mediated damage and inactivation respectively. Interestingly,
MnSOD appears to be subject to inactivation due to ROS-
mediated oxidation, and tyrosine nitration [8,9].

A third form is EC-SOD, or SOD3, which is a
copper- and zinc-containing enzyme found extracellularly
either anchored to sulfated GAGs (glycosaminoglycans) or
circulating in plasma and other fluids [10]. The extracellular
SOD is likely to play a particularly important role in
protecting the endothelium [11].

MnSOD in tumours
Alterations in the levels of proteins involved in redox
regulation have been reported in a number of tumour types.
Generally, antioxidant defence enzymes are decreased in
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tumour tissue when compared with normal tissue [12,13].
First evidence that MnSOD deficiency contributes to
tumorigenesis came from studies showing a reduction of
MnSOD in various types of tumours [14–16]. In human
oral cancers, a high expression level of MnSOD was
associated with better disease-specific survival, especially
for patients with moderate or poor cell differentiation,
and early stage buccal mucosal squamous cell carcinomas
[17]. In human oesophageal cancers, studies have shown
that decreased MnSOD levels are associated with increased
incidences of oesophageal adenocarcinoma [18]. Moreover,
when analysing 240 patients with diffuse large B-cell
lymphoma it was found that patients with the worst prognosis
had decreased expression of MnSOD, but also catalase,
glutathione peroxidase and vitamin D3 up-regulated protein
1 [19]. Likewise, heterozygous MnSOD-knockout mice and
hepatocyte-deficient MnSOD-knockout mice showed an
increase incidence of tumours [20]. By contrast, a higher
expression of MnSOD was found in cancerous than in non-
cancerous tissues, where higher MnSOD levels were found
in thyroid [21], brain [16], oesophageal, gastric [22] and
colorectal [23] cancers, which leads to the question whether
the MnSOD increase is indeed beneficial or a reaction of the
cells to fight the tumour.

In addition, MnSOD exists in at least two functional
variants in humans [24]. These variants which show either
reduced mitochondrial translocation or enzyme activity [25]
were associated with a higher incidence in human cancer
[26,27].

Overall, the majority of the findings strongly support the
role of MnSOD as tumour suppressor as well as the role of
oxidative stress as tumour promoter.

MnSOD affects cell migration, invasion
and proliferation
Migration and invasion are characteristic for tumour cells
and an enhanced migration and invasion is usually associated
with a more metastasizing phenotype. MnSOD appeared
to decrease migration of VSMCs (vascular smooth muscle
cells) during neointima formation after balloon injury in
mice, whereas knockdown of MnSOD increased smooth
muscle cell migration [28]. In contrast with these findings are
reports indicating that a high MnSOD expression promotes
migration and thus a malignant phenotype of HT-1080
fibrosarcomas [29]. Furthermore, knockdown of MnSOD in
a highly metastatic tongue squamous cell carcinoma model
by RNAi caused a significant reduction of migration and
invasion [30].

Thus these findings indicate that cell migration is a complex
process involving many molecular interactions and as such
the effect of MnSOD on migration might in part be tissue
specific.

Changes towards a more malignant phenotype due
to the loss of MnSOD expression are also reflected in
cell proliferation. Heterozygous MnSOD-knockout mice

showed an increased rate of proliferation [31] and suppression
of MnSOD by siRNA resulted in stimulation of proliferation
in ovarian cancer cells [32]. Furthermore, overexpression of
MnSOD has been shown to inhibit cellular proliferation
of numerous tumour cell types both in vitro and in vivo
[28,33,34]. These findings are in line with studies showing
low MnSOD levels during the S-phase of the cell cycle [35]
and with observations showing a reversed transformation
upon overexpression of MnSOD in different cancer cell lines
[36,37].

In addition, MnSOD increased during progression from
early stage benign tumours to late stage malignant ones in
a DMBA/TPA multistage skin carcinogenesis model [38].
These data together with the finding that overexpression of
MnSOD prevented cell growth and reversed tumorigenesis
[36,37,39] indicate that the observed increase in MnSOD
levels in advanced carcinomas is a consequence of the defence
rather than the cause.

MnSOD contributes to mitochondrial
integrity and oxidative phosphorylation
The scavenging action of MnSOD seems to play a critical
role in maintaining the integrity of mitochondria. The loss of
MnSOD would be expected to impair the proper removal of
superoxide within mitochondria and cause an overall increase
in mitochondrial ROS levels and a change in the MMP
(mitochondrial membrane potential). Indeed, the MMP was
found to be reduced in MnSOD depleted cells [40].

Furthermore, increased energy production by glycolysis,
without a corresponding increase in oxidative phosphoryla-
tion, is another well-documented feature of cancer and
corresponds well with an indication of mitochondrial
damage caused by loss of MnSOD. Indeed, ATP production
by oxidative phosphorylation was shown to be impaired
in heterozygous MnSOD-knockout mice [41], whereas
overexpression of MnSOD in fibrosarcoma cells increased
ATP generation during oxidative phosphorylation [42]. This
is also associated with defects in lipid metabolism where
postnatal lethal Mnsod − / − mice exhibited lipid accumulation
in their liver and where Sod2+ / − mice also displayed
disrupted mitochondria, accumulation of lipid droplets and
increased lipid peroxidation [43].

Overall, these findings show that loss of MnSOD alters
mitochondrial integrity and oxidative phosphorylation.

MnSOD modulates expression and activity
of some key regulatory proteins
ROS generation, as by-products or as signalling molecules, is
influenced by developmental aspects, tissue-specific features
and environmental factors. One such important factor with
respect to tumorigenesis appears to be tumour hypoxia which
persists in almost all solid tumours, and the ability of cells to
survive under low O2 conditions is a key feature of malignant
tumours [44]. Hypoxia has been found to be an inducer
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of cellular stress and MnSOD has been shown previously
to be able to protect cells against oxidative stress induced
by reoxygenation after hypoxia [40,45]. Thus it appeared
that MnSOD had an impact on the key regulatory HIF-
1α (hypoxia-inducible factor 1α). Indeed, overexpression of
MnSOD in human breast carcinoma MCF-7 cells modulated
the appearance of HIF-1α in a biphasic manner: low level
expression of MnSOD (2–6-fold) reduced the hypoxia-
dependent induction of HIF-1α, whereas a more than 6-fold
increase in MnSOD activity restored the hypoxia-dependent
induction of HIF-1α [46]. These observations are in line with
the regulatory mechanism of HIFα degradation. Degradation
of HIFα is known to require the presence of Fe2 + as a cofactor
for the PHDs (prolyl hydroxylases), which hydroxylate
HIFα at conserved proline residues, mediating proteasomal
degradation [46]. Whereas O2

• − in general causes reduction
of iron, H2O2 oxidizes it to Fe3 + . Thus overexpression of
MnSOD and accumulation of H2O2 would decrease PHD
activity and HIFα degradation, whereas the loss of MnSOD
and accumulation of O2

• − should increase PHD activity and
HIFα degradation. However, these findings are contrasted by
a study showing that SOD mimetics suppressed angiogenesis
via inhibiting HIF-1α and the expression of its target gene
VEGF (vascular endothelial growth factor) in a mouse model
of breast cancer [47].

Furthermore, MnSOD may not only influence HIF-1α

since it was also found that MnSOD overexpression increased
or decreased the activity of the transcription factor AP-
1 [31,48]. Another transcription factor which appears to
interfere with MnSOD via direct interaction is p53. To achieve
this interaction, p53 is transported to the mitochondria before
it is translocated to the nucleus. In the mitochondria p53
physically interacts with MnSOD and inhibits its enzymatic
activity and thus contributes to enhanced ROS generation
[49].

Apart from transcription factors, MnSOD also appears
to affect major signalling components such as PKB (protein
kinase B, also known as Akt), which is in general associated
with cellular transformation as well as migration and
inhibition of apoptosis. Recent data showing decreased PKB
phosphorylation in MEFs (mouse embryonic fibroblasts)
from Mnsod − / − mice [45] and data from lymphoma cells
where increased MnSOD expression or treatment with
manganese porphyrin potentiates dexamethasone-induced
apoptosis support the view that MnSOD contributes to
apoptosis [50]. In addition, MnSOD overexpression also
suppressed the activation of PKCε (protein kinase Cε), a
PKC isoform activated by tumour promoting phorbol esters
[48].

Together, it becomes obvious that the type of tissue, the
developmental stage at which transcriptional events occur,
and environmental factors may affect tumorigenesis.

Conclusion
A variety of studies demonstrated that MnSOD plays a
critical role in tumorigenesis and is associated with signalling,

transcriptional regulation, mitochondrial metabolism and
energy homoeostasis. Although decreases in ROS formation
via MnSOD expression/activity were shown to improve
mitochondrial integrity and to reverse the glycolytic switch
in various cancer cells, other downstream regulators such as
p53, aberrant acetylation by Sirt3 and epigenetic modifiers
as well as environmental changes may contribute to cellular
damage creating a tumour-permissive phenotype. These
multiple layers of regulation contribute certainly to the
many caveats and limitations that it is crucial to consider
when interpreting data from reports indicating a tumour-
suppressive role of MnSOD, and others describing a higher
expression of MnSOD in some cancers. Thus the question
of whether MnSOD is friend or foe in cancer remains, but
future studies evaluating genome-wide alterations following
antioxidant induction can help to explore the role of MnSOD
not only in cancer, but also in other diseases, more efficiently.
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