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Introduction

Breast cancer (BC) is the most common cancer among 
women. Global statistic data show rising morbidity and 
mortality from BC annually indicating greater than 1.15 
million women are diagnosed with breast cancer every 
year and around half of them die from the disease . BC is 
the leading cause of cancer diagnosed in Iranian women. 
Studies show that BC is 76% of all cancers found in 
Iranian women leading to about 1200 deaths per year. 
Iranian women are affected by breast cancer between ages 
of 47 and 49 years that is 10 years earlier than women in 
developed countries .

Vitamin D deficiency is prevalent among breast cancer 
women, low levels of serum vitamin D are associated 
with recurrence (Vrieling et al., 2011), invasiveness , and 
mortality (2014). On the other hand, women with higher 
levels of serum vitamin D are more likely to survive twice 
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than women with low levels (2014). Receptors of vitamin 
D exist in up to 78% of breast cancers cells. As long as 
vitamin D receptors exist, tumor growth might stop, and 
carcinogenic cells may die from increasing blood supply. 
Function of vitamin D receptors stay until a tumor become 
very aggressive. This may be the reason for better survival 
in patients with higher blood levels of vitamin D (Ditsch 
et al., 2012).

At the present, vitamin D supplementation is a simple, 
operational and low price approach for treating deficiency 
and preserving adequacy (Talwar et al., 2007; Aloia et al., 
2008; Gallagher et al., 2012; Vande Griend et al., 2012). 
Although there is not a ‘‘standard’’ definition of vitamin 
D status, an extensively accepted category is deficiency at 
<20 ng/mL, insufficiency at 20–31 ng/mL, and an optimal 
range of ≥32 ng/mL (Malabanan et al., 1998; Calvo et al., 
2005). Serum levels of 25 (OH) D are different between 
individuals, even with a particular intake dose of vitamin 
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D. A number of demographic and biological factors like 
ethnicity, dietary fat amount and components, genetic 
variation and some diseases affect 25 (OH) D levels in 
the population (?2012; Mazahery and von Hurst, 2015). 
VDR SNPs exerting regulatory role on 1, 25(OH) D3. 
Therefore, they may be evaluated as a predictor of disease 
response to supplementation. Alterations in 1, 25(OH) 
D3 levels and VDR polymorphisms have been related to 
several systemic malignancies (McCullough et al., 2009). 
FokI RFLP in exon 2, BsmI, and ApaI polymorphisms in 
intron 8 and an adjacent TaqI RFLP in exon 9 have more 
correlation with breast cancer (Hutchinson et al., 2000; 
Newcomb et al., 2002; Lopes et al., 2010). A case–control 
study investigated the risk of breast cancer with regards 
to polymorphism of genes correlated to 25 (OH) D in 
plasma. It was shown the VDR polymorphism, TaqI, 
was associated with a 26% risk reduction (Reimers et al., 
2015). A clinical trial found that the genetic variation in 
vitamin D receptor protein may affect the 25 (OH)D of the 
participant taking vitamin D3 supplements (Nimitphong 
et al., 2013). Despite the epidemiological evidence, there 
are no published trials regarding the effects of vitamin 
D supplementation on blood levels of 25 (OH)D in the 
different variation of VDR polymorphism among breast 
cancer women. To this purpose, we conducted a pilot, 
randomized, double-blind, placebo-controlled trial of 
vitamin D3 supplementation in comparison with placebo 
over 2 months to estimate the changes of total 25 (OH)D 
according to a high dose of vitamin D supplement  among 
subgroups of VDR genotype.

Materials and Methods

Study population
This study was conducted on 56 women aged between 

30 and 60 years diagnosed with stages I to III breast cancer 
who were followed up at the oncology ward, University 
Golestan Medical Center, from April to September 2015. 
Patients with metastatic breast cancer and those who had 
histories of other cancers, chemotherapy, radiotherapy, 
and hormone therapy for any reasons except current 
cancer, under treatment by corticosteroids, having chronic 
diarrhea and malabsorption were excluded. Patients with 
known inflammatory conditions (such as acute bacterial 
or viral infections), autoimmune diseases (such as 
rheumatoid arthritis or lupus) were also excluded from 
the study. The sample size of 23 was calculated for each 
group considering significance level of p < 0.05 and power 
of 80% (Hopkins et al., 2011). Applying 20% dropout, a 
sample size of 28 for the placebo and intervention groups 
was yielded.

Clinical protocol 
A randomized block design method was used to 

randomly assign the matched participants into placebo 
(n=28) or weekly 50,000 IU vitamin D3 treatment (n=28) 
groups. Participants that gave written consent to participate 
were interviewed and their blood samples were taken in 
fasting state. The participants were enrolled between 
April and September 2015. Patients’ diets were assessed 
within 3 days through 24 hours recall questionnaire at 

pre- and post-study periods. Body weight was measured 
using Seca scale, model 769 with the accuracy of 0.1 Kg 
with no shoes and least clothes and height was measured 
using a non-stretchable stadiometer. Waist circumference 
was measured based on standard protocol. Vitamin D 
and placebo pearls were identical in size, appearance, 
and taste and were manufactured by Zahravi Pharm. Co, 
Tabriz, Iran.  Pearls were given each month, and obedience 
was checked by weekly phone calls. Compliance was 
considered as consumption of at least 90% of the supplied 
pearls. At the end of two months, blood samples were 
collected for measurement of serum 25 (OH) D levels and 
VDR polymorphism in subjects who completed the course. 
Serum and plasma samples were separated by centrifuging 
at 2000 RMP for 16 min using a 46H centrifuge (HETTIC, 
FRANCE). The serum samples were stored at -70°C 
freezer for further analyses.

Clinical measures
Serum 25 (OH) D levels were determined using ELISA 

kits (bioactiva diagnostica GmbH, Homburg, Germany); 
according to the manufacturer’s protocol. SSP-PCR 
technique was used to determine the different VDR gene 
polymorphisms including ApaI ،BsmI ،FokI, and TaqI 
of all subject (Dawson-Hughes et al., 2005; Lombard et 
al., 2006; Søborg et al., 2007). DNA was extracted using 
commercial DNA extraction Kit (Roach, USA) from 
blood specimens. PCR reaction in a total volume of 25 
µl was performed. Primers sequence are shown in Table 
3.Then the product of PCR reaction was electrophoresed 
in Agarose gel 1.5%. After performing genotyping, allele 
frequencies and genotype polymorphism of the VDR 
gene were identified. The four SNPs of VDR are located 
in exon 2, intron 8, intron 8 and exon 9 of chromosome 
12 (12q12-q14), respectively. Mean of 3-day energy and 
nutrients intakes were analyzed using Nutritionist IV 
Database Manager Software. A trained nutritionist (HM) 
performed all data entrance. 

Statistical analysis
Both groups were evaluated for comparability of 

characteristics at baseline and post-intervention using 
Chi-Square test for categorical variables and independent 
t-test or paired t-test for continuous variables. The 
normality checked using KS test. Treatment effects 
were evaluated by assessing the differences from 
baseline to 2-month follow-up between the arms using a 
repeated-measures ANOVA. All statistical analyses were 
performed using SPSS version 24. P-value less than 0.05 
was considered statistically significant.

Results 

A total of 125 patients were screened that led to the 
enrollment of 56 eligible participants. Patients were 
randomly assigned to receive vitamin D3 (n=28) and 
placebo (n=28) for 2 months. Nine patients (9/56, 16%) 
withdrew from the study: 5 patients in the vitamin D3 
group and 4 in the control group due to discontinuing 
(n = 1), unwillingness to continue participation (n = 4), 
metastasis diagnosis (n =2), and consuming Ca/vitamin 
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(62.5%) stayed in the same group. However, serum 
levels of one patient (12.5%) reduced to lower than 20. 
MacNemar test showed no significant differences between 
serum levels of 25(OH)D ≥32 and <32.

Table 5 indicates changes in 25(OH) D concentrations 
based on baseline characteristics of breast cancer women. 
Among supplemented group, only subjects with BMI 25 
to 30 experienced an elevation in serum 25(OH) D after 
post-intervention (41.5±4.8 ng/mL vs. 28±3.7 ng/mL, 
p=0.014), while no significant changes were observed in 
placebo group. Moreover, absolute treatment effect on 
serum vitamin D was significant in both normal weight 
(mean change: 21.3±5.5 ng/mL in treatment vs. -2.2±1.3 
ng/mL in placebo, p= 0.001) and overweight breast cancer 
patients (mean change: 13.5±4.3 ng/mL in treatment vs. 
-1.4±2 ng/mL in placebo, p=0.013).

The mean increment in serum levels of 25 (OH) D 
among Arab ethnicity, was 35% higher than Fars (p= 0.09). 
However, increment in both ethnicity was significant 

D pills (n = 2). Consequently, 47 women (mean age 47 
year) were included in the final analysis. 

All baseline characteristics of subjects in both placebo 
and vitamin D3 groups were similar (Table 1). The mean 
age of participants was 47 years; most subjects were Arab 
(49%) and Fars (51%). The dietary intake of participants 
at baseline and 2 months after supplementation indicated 
no significant differences between the two groups. 
On average, 95% of supplements were consumed 
by participants. Table 2 shows the distribution of 12 
subgroups VDR between the placebo and vitamin D 
groups. Baseline distributions of different genotype were 
identical in the categories.

Thirty-seven out of 47 subjects (78%) had vitamin D 
deficiency or insufficiency (serum 25(OH) D less than 
31 ng/mL). As shown in Figures 1, after supplementation 
25 (OH) D3 levels increased significantly (28±2.6 ng/mL 
vs. 39±3.5 ng/mL; p < 0.004). Furthermore, as seen in 
Table 4, serum levels of 25(OH)D was divided into three 
groups according to blood levels of 25(OH)D before 
intervention [25 (OH) D3< 20 ng/ml, 20 -31 ng/ml and 
>32ng/ml]. In the deficiency group, six patient had serum 
levels of vitamin D lower than 20 at baseline. After eight 
weeks follow-up, two patients (33.4%) improved to 
higher than 32 ng/ml. In insufficient group (20-31 ng/
ml), seven women (78.8%) enhanced to the higher than 
32(sufficient). In sufficient group, 5 out of 8 patients 

Treatment group
Characteristics Placebo Vitamin D pa

n=24 n=23
Demographics
     Age, y 46.3(9.5) 47.7(8.0) 0.6
Ethnicity,%
     Arab 54 43.5
     Fars 46 56.5 0.46
Breast cancer Stage, %
     I 33 27
     II 42 43
     III 25 30 0.50
Menopaused,%
     Yes 38 65
     No 62 35 0.80
Anthropometric
     BMI 29.2±6.3 30.2±5.4 0.59
     Waist circumference 103.5±12.5 109±11.2 0.12
Mean dietary intakes
     Total energy intake, 
kcal/d

1,796±528 1,848±821 0.59

     Total fat, g/d 67±32 70 ±32 0.59
     Dietary calcium, mg/d 618±308 843±526 0.41
     Dietary fiber, g/d 15±7 18±9 0.97

Table 1. Baseline Characteristics of the Participants

Data are given as means±SD unless specified.; a Chi square test 
was used for categorical variables. Independent t-test was used for 
continuous variables; NO significant differences were found between 
the groups.

Figure 1. 25 (OH)D3 Levels at Baseline, and at 2 Months 
after bVitamin D3 Supplementation 

Polymorphism                                         placebo vitamin D pa

BsmI
     BB 5 (20.8) 2 (8.7)
     Bb 11 (45.8) 16 (69.6)
     bb 8 (33.4) 4 (21.7) 0.2
TaqI
     TT 5 (21.7) 13 (56.5)
     Tt 15 (65.3) 6 (26.1)
     tt 3 (13) 4 (17.4) 0.53
ApaI
     AA 11 (45.8) 9 (39.1)
     Aa 11 (46.8) 9 (39.1)
     aa 2 (6.4) 5 (21.8) 0.43
FokI
     FF 2 (8.3) 2 (8.7)
     Ff 19 (79.2) 19 (82.6)
     ff 3 (12.5) 2 (8.7) 0.9

Table 2. Genotype Frequencies of the VDR Gene 
Polymorphisms in Breast Cancer Patients

Data are given as number (percent); a, Chi-Square test was used.
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post-intervention (Arabs 17±57 ng/mL vs. Fars 6.4±3 
ng/mL, 0.04). Supplementation demonstrated significant 
effect just on age 50 years and less (+12.4±4.45 ng/mL in 
supplementation vs. -2.8±0.98 ng/mL in placebo group, 
p=0. 005). 

Some differences were found in serum 25(OH)D 
among subjects after intervention according to their 
genotypes (Table 6). When comparing serum 25 (OH)D 
change at 2 months with baseline values, subjects with 
AA genotype showed 35% increase in 25 (OH)D levels 

after taking vitamin D3 (P= 0.038) . Patients with TT, Tt, 
ff, Ff genotype had greater increase in 25 (OH)D levels 
after taking vitamin D3, i.e., 75%, 46%, 72%, and 57%, p≤ 
0.024 respectively. Serum 25 (OH)D levels significantly 
increased in AA, Ff, ff, Bb, TT, and Tt genotypes (p≤0.04). 
From six genotype that significantly increased 25(OH)D 
(p≤ 0.038), The largest increment was in ff (22.5±0.5 ng/
mL) compares to  TT (14.7±4.3 ng/mL) Bb (11.6±2.9 ng/
mL), Tt (11.3±4.2 ng/mL), Ff (11.2±3.3 ng/mL) .

Discussion

Present study demonstrated that vitamin D insufficiency 
and deficiency, as determined by serum 25-(OH) D 
levels, were seen in 79 percent of breast cancer women. 
The overall prevalence of vitamin D insufficiency and 
deficiency in our study is close to other studies evaluating 
vitamin D levels in breast cancer patients (Neuhouser et 
al., 2008; Crew et al., 2009; Khan et al., 2010; Peppone et 
al., 2011; Prieto-Alhambra et al., 2011) and other cancer 
types (Fakih et al., 2009; Trump et al., 2009). 

Supplementation with 50,000 IU vitamin D3/week 
increased serum 25(OH)D levels higher than placebo 

Gene Location Primers Amplicon size (bp)
Exon 2 FokI F (46559145-46559162) 5'-TGGCCGCCATTGCCTCCG-3'

FokI f (46559145-46559162) 5'-TGGCCGCCATTGCCTCCA-3 77
FokI C (46559204-46559221) 5'-AGCTGGCCCTGGCACTGA-3'

Intron8 BsmI B(46526083-46526102) 5'-AGCCTGAGTACTGGGAATGT-3' 534
BsmI b(46526083-46526102) 5'-AGCCTGAGTACTGGGAATGC-3'
BsmI C(46526599-46526616) 5'-GGGAGGGAGTTAGGCACC-3'

Intron8 ApaI A(46525104-46525123) 5'-TGGGATTGAGCAGTGAGGT-3' 229
ApaI a(46525104-46525123) 5'-TGGGATTGAGCAGTGAGGG-3'
ApaI C(46524894-46524912) 5'-CCTCATTGAGGCTGCGCAG-3'

Exon 9 TaqI T(46525024-46525041) 5'-CAGGACGCCGCGCTGATT-3' 148
TaqI t(46525024-46525041) 5'-CAGGACGCCGCGCTGATC-3'
TaqI C(46524894-46524912) 5'-CCTCATTGAGGCTGCGCAG-3'

Table 3. Primers Using in VDR Genotyping and Size of PCR Product

Baseline 8 week follow up
<20 20-31 ≥32

Total n (%) n (%) n (%) n (%)
<20 6 (100) 0 4 (66.6) 2 (33.4)
20-31 9 (100) 0 2 (22.2) 7 (77.8)
≥32 8 (100) 1(12.5) 2(25) 5 (62.5)

Table 4. Changes in Serum 25(OH) D Categories 
in Vitamin D Supplement Group Pre- and Post-
Supplementation

25(OH)D was defined as <20 ng/ml deficiency, 20-31 ng/ml insufficient 
and >32 ng/ml sufficient; MacNemar test showed no significant 
differences between serum levels of 25(OH)D ≥32 and <32.

Placebo Vitamin D Absolute treatment effect a

n Baseline 8 week  follow up pc n Baseline 8 week  follow up pc placebo Vitamin D Pb

BMI
     <25 7 16±4.3 13.7±3.7 0.14 3 32±3.6 54±18.4 0.061 -2.2±1.3 21.3±5.5 0.001*
     25-30 7 14.8±4.7 13.4±4.8 0.5 9 28±3.7 41.5±4.8 0.014 -1.4±2 13.5±4.3 0.013*
     ≥30 10 12.7±1.7 11.4±2 0.4 11 26.9±3.5 32.9±3.7 0.26 -1.3±1.5 6±0.5 0.19
Ethnicity
     Arab 13 14.8±2.8 12.6±2.6 0.13 14 29.3±4.7 45.9±7 0.016 -2.1±1.3 17±5.7 0.009*
     fars 11 13.7±2.6 12.7±2.7 0.46 9 27±2.8 33.5±2.8 0.057 -1±1.3 6.4±3 0.04*
Age
     ≤50 17 14.9±2.2 12±2.1 0.01 13 23.7±2.3 36.2±3.3 0.016 -2.8±0.98 12.4±4.45 0.005*
     >50 7 12.9±3.8 14.3±3.8 0.43 10 33.7±4.8 42.7±7 0.079 1.4±1.7 9±4.5 0.14

Table 5. Changes in 25(OH)D Levels with Regard to Baseline Characteristics of Breast Cancer Patient 

Values are Mean±SD; * p value< 0.05; a, Absolute treatment effect is the absolute changes from baseline to follow-up in the treatment group minus 
the absolute change from baseline to follow-up in the placebo group; b, P values for difference between the treatment and placebo groups; c , P values 
for difference between follow-up and baseline visits.
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confirming the 25(OH)D increase after vitamin D3 therapy 
observed in other studies (Khan et al., 2010; Lammersfeld 
et al., 2010; Peppone et al., 2011). A recent meta-analysis 
revealed that vitamin D3 is more capable of improving 
serum 25(OH)D concentration when administered as a 
high oral dose (300,000 IU single or 50,000 IU monthly) 
compared with 20,000 IU/d or 400 IU/d and the influence 
is lost with 1,000-4,000 IU/d supplementation (Macdonald 
et al., 2012). 

The way individuals responded to or metabolized 
vitamin D differs noticeably base on the individual’s 
characteristics and biological parameters. Differences 
in BMI or body fat percentage (Zwart et al., 2011; 
Gallagher et al., 2012), dietary fat content and composition 
(Grossmann and Tangpricha, 2010), ethnicity (Aloia et 
al., 2008; Gallagher et al., 2013), calcium intake (Thomas 
et al., 2010), as well as genetics (Vuolo et al., 2012; 
Narvaez et al., 2014) may describe the large discrepancies 
among individuals regarding vitamin D status. In our 
study, vitamin D3 supplementation diversely rose serum 
25(OH) D. Subjects with insufficient levels of vitamin D 
showed higher response to vitamin D supplementation. 
The greatest increase was seen in subjects in the second 
tertile (20-31 ng/mL), followed by those in the first tertile 
(5-20 ng/mL) and then those in the third tertile (>32 ng/
mL). This result was in contrary  to a study which showed 
that change in 25(OH)D concentrations had significant 
inverse correlation with its baseline concentrations(Trang 
et al., 1998). No significant association was found in 
changes of 25(OH) D between Arab and Fars ethnicity 
when comparing treatment group and placebo, while 
Arabs response to vitamin D supplementation was higher. 
However, due to small sample size, we need to be more 

cautious to conclude such association. 
The current study demonstrated that VDR genetic 

variation is another factor which can influence the 
responsiveness to vitamin D supplementation. Circulating 
levels of 25 (OH) D in AA genotype were significantly 
higher compared to the aa or Aa genotype after 
supplementation. This finding is in contrast with a study 
that showed A alleles increased the breast cancer risk 
patients by 1.5 fold (Curran et al., 1999). In another 
survey, AA genotype in Taiwanese patients with sporadic 
breast cancer was associated with an increased risk 
of breast cancer.(Hou et al., 2002). We observed six 
genotypes significantly modified the efficacy of vitamin 
D3 supplementation for increasing serum 25(OH)
D: AA, TT, Tt, ff , Ff and Bb. Expectedly, most VDR 
genotypes associated with baseline 25(OH)D substantially 
altered the response to supplementation. De Medeiros 
showed BB/Bb genotype had higher levels of 25(OH)
D post intervention among elderly women (de Medeiros 
Cavalcante et al., 2015). Shab-Bidar et al suggested BB, 
Bb, and bb genotype respond positively to vitamin D3 
significantly that the greatest increase is in BB subgroup 
(Shab-Bidar et al., 2015). In present study, ff group had 
the largest increase of 25(OH)D in respond to vitamin D3 
supplementation. On the contrary, Neyestani showed ff 
genotype is the least increase of  25(OH)D after 12 weeks 
intake of  yogurt drink  fortified with 500 IU vitamin D3 
in diabetic patients (Neyestani et al., 2013). Our results 
suggest that VDR signaling pathways might control oral 
25(OH)D versus cutaneous synthesis or adipose stores. 
Few clinical trials have evaluated changes in circulating 
25-hydroxyvitamin D in accordance with VDR genotypes 
after vitamin D3 supplementation. Some studies have 

Placebo Vitamin D Absolute treatment effect a
Genotype n Baseline 8 week 

follow up
pc n Baseline 8 week 

follow up
pc placebo Vitamin 

D
Pb

FokI

     FF 2 9.4±3.7 10±3.2 0.18 7 28.5±15 25.0±0 0.082 0.6±0.6 -3.5±15.5 0.83
     Ff 19 14.8±2.3 13±2.2 0.003 19 28.1±2.9 39.3±4.0 0.007 -1.8±1.1 11.2±3.3 0.001*
     ff 3 17.0±0 14.0±4 0.43 2 27.0±7.0 49.5±6.5 0.015 -3±4 22.5±0.5 0.024*
BsmI

     BB 5 15.8±5.8 12.2±5.7 0.82 2 25.5±14 21.0±5.0 0.4 -3.6±1.4 -4.5±19.5 0.93
     Bb 11 11.3±2.4 11.4±2.4 0.003 16 27.4±3.0 39.0±4.3 0.003 0.09±1.4 11.6±2.9 0.002*
     bb 8 17.5±3 14.7±3.1 0.4 4 35.5±6.4 46.2±9.0 0.82 -2.8±1.6 10.7±9.6 0.26
ApaI

     AA 11 15.3±3.4 13.5±3.1 0.012 9 35.1±4.4 45.8±7 0.087 -1.8±1.2 10.7±5 0.038*
     Aa 11 12.5±1.8 10.9±1.9 0.053 9 24.5±4.2 31.0±3.9 0.26 -1.6±1.6 6.5±4.6 0.089
     aa 2 18.0±12.0 17.5±12. 0.12 5 21.8±2.3 41.0±5.8 0.073 -0.5±0.5 19.2±7.5 0.07
TaqI

     TT 5 18.4±5.7 15.6±4.6 0.11 4 31±5.6 46.2±9.0 0.05 -2.8±2.35 14.7±4.3 0.007*
     Tt 15 14.6±2.3 14.0±2.3 0.001 13 27±4.1 38.3±5.2 0.032 -0.6±15.3 11.3±4.2 0.017*
     tt 3 8.6±2.4 3.6±0.8 0.14 6 28.1±3.6 35.7±5.6 0.43 -5.0±3.0 7.6±7.8 0.31

Values are Mean±SD; *, p value< 0.05; a, Absolute treatment effect is the absolute change from baseline to follow-up in the treatment group minus 
the absolute change from baseline to follow-up in the placebo group; b, P values for difference between treatment and placebo groups; c, P values 
for difference between follow-up and baseline visits.

Table 6. Changes in 25(OH)D Levels with Regards to VDR Polymorphism in Breast Cancer Patients
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attributed 25(OH)D increase to genetic variation in DBP 
(vitamin D Binding Protein), 25-hydroxylase (CYP2R1), 
24-hydroxylase (CYP24A1), and the VDR genes (Fu et 
al., 2009; Nimitphong et al., 2013; Barry et al., 2014). 
VDR polymorphisms may explain inter-individual 
differences in response to vitamin D. Discrepancies in 
these results among different study populations might be 
a result of ethnic variation in the incidence of VDR gene 
polymorphisms (Zmuda et al., 2000; Uitterlinden et al., 
2004; Kamel et al., 2014). Potential gene-environment 
interactions might be related to polymorphisms in the 
VDR pathway. Interaction of serum vitamin D and VDR 
phenotypes are complex which deserves further research.

There were some drawbacks in this study. One of the 
limitations is the type of treatment and changing medically 
happened during the investigation (chemotherapy to 
radiotherapy and anti-hormone therapy). It has been 
demonstrated that Vitamin D levels decline during 
chemotherapy but improve after ending treatment. 
Tamoxifen, an anti-hormone drug, may also increase 
serum vitamin D levels (Kim et al., 2014). Moreover, 
ultraviolet radiation exposure can influence the circulating 
levels of 25(OH)D (Bodiwala et al., 2004). Further studies 
with higher sample size are needed in this area. Despite 
the limitations of our study, we indicated connections 
between genetic and nutritional factors, which confirmed 
by the different responses to supplement therapy, and 
these outcomes may play a role in the adjustment of more 
individualized treatments. Also, to our best information, 
this study is the first RCT to examine the effect of oral 
vitamin D supplementation on circulating 25(OH)D 
according to four VDR polymorphisms (i.e. BsmI, ApaI, 
TaqI, and FokI) in women with breast cancer in Iran.

In conclusion, supplementation with vitamin D3 
tends to improve total 25(OH)D levels. Variants VDR 
polymorphisms influence the responsiveness to vitamin 
D3. VDR TT genotype may be considered as “high 
responder” to vitamin D supplementation with regard to 
responding to circulating 25(OH)D. Nutrigenetic approach 
is suggested for personalized treatment.
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