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Summary
Airway and intestinal epithelial layers represent first-line physical barriers, playing a key
role in mucosal immunity. Barrier dysfunction, characterized by alterations such as dis-
ruption of cell–cell apical junctions and aberrant epithelial responses, probably constitutes
early and key events for chronic immune responses to environmental antigens in the skin
and in the gut. For instance, barrier dysfunction drives Th2 responses in atopic disorders
or eosinophilic esophagitis. Such epithelial impairment is also a salient feature of allergic
asthma and growing evidence indicates that barrier alterations probably play a driving
role in this disease. IgA has been identified as the most abundant immunoglobulin in
mucosa, where it acts as an active barrier through immune exclusion of inhaled or
ingested antigens or pathogens. Historically, it has been thought to represent the serum
factor underlying reaginic activity before IgE was discovered. Despite several studies
about regulation and major functions of IgA at mucosal surfaces, its role in allergy
remains largely unclear. This review aims at summarizing findings about epithelial func-
tions and IgA biology that are relevant to allergy, and to integrate the emerging concepts
and the recent developments in mucosal immunology, and how these could translate to
clinical observations in allergy.

Introduction

Breathing and eating are two vital functions that
carry thousands of external particles in the airway
and the gastrointestinal tracts. Exposed to those
inhaled and ingested particles, the mucosal surface
may initiate different immunological responses. Under
normal conditions, potentially dangerous antigens
trigger adaptive immune responses, while innocuous
antigens are eliminated without generating inflamma-
tory responses. Mucosal immunity’s prominent duty is
to provide the adequate response to this continuous
antigenic stimulation, to generate either inflammatory
or tolerogenic immune responses, while failure in this
mission could lead to recurrent infections or allergy,
respectively.

Mucosal dysimmunity is thought to be responsible
for the global increase in mucosal inflammatory dis-
eases of the airway (allergic rhinitis, asthma) and
gastrointestinal tract (food allergy, as well as
Crohn’s disease and ulcerative rectocolitis). Over the
last decades, prevalence of allergic diseases has
strongly increased, global asthma prevalence in

developed countries reaching 9–25% in the 2000s,
depending on the studies [1], and food allergy
affecting today nearly 5% of adults and 8% of chil-
dren [2].

On the one hand, epithelial integrity, including
appropriate polarity, apical junctional complexes (AJCs)
and IgA transcytosis, could play a major role in allergy,
as it normally prevents allergens from adhering to the
epithelium and reaching subepithelial areas. Epithelial
dysfunction has been recently demonstrated to drive
allergic diseases in the gastrointestinal tract and in the
skin [3, 4] and is the subject of intense research in
mucosal immunology. On the other hand, immunoglob-
ulin (Ig) A represents the predominant Ig in human
secretions and is widely involved in immune exclusion
of antigens. The failure of the IgA system to achieve
this function has been hypothesized to favour allergy,
while the evidence supporting this has only been pro-
vided recently.

The present review will focus on recent advances in
our understanding of the function of both mucosal bar-
rier and humoral immune system and their relationship
to allergic diseases.
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The epithelium as master regulator of the mucosal
barrier

The junctional barrier

The first physical barrier to inhaled or ingested antigens
consists of the intestinal and airway epithelial layer,
playing a key role in mucosal immunity. Epithelial api-
cal junctional complexes (AJCs) promote cell–cell adhe-
sion and barrier integrity, ensuring apico-basal polarity
[5] and the regulation of paracellular passage of ions
and macromolecules, including potential allergens.
AJCs include both tight junctions and adherens junc-
tions. Three types of transmembrane proteins compose
tight junctions: (a) members of the claudin family, (b)
MARVEL family members such as occludin and (c) Ig-
like proteins such as junctional adhesion molecules
(JAMs)[6–8]. E-cadherin and nectin family members
represent the major transmembrane proteins of adhe-
rens junctions [9, 10]. Adhesive components of the
AJCs are stabilized by links to intracellular proteins
(zonula occludin (ZO) proteins, catenin-family proteins,
actin perijunctional belt binding proteins) [11] and pre-
vent invasion of antigens between epithelial cells (ECs).
However, this junctional barrier may be altered by
allergens, viruses or fungi [12, 13], cigarette smoke or
air pollution, or inflammatory cytokines [14], poten-
tially favouring IgE-mediated immunity. Increased
epithelial permeability probably occurs through multi-
ple mechanisms and results in greater penetration of
inhaled particles in subepithelial areas, and subse-
quently elicitation of adaptive immunity as observed in
allergic asthma [15, 16].

A non-exhaustive list of inducers of barrier dysfunc-
tion and their pathogenic mechanisms is summarized in
Table 1.

Epithelial sensing and production of cytokines and
alarmins

Beyond their barrier function, ECs are able to shape
immune responses by secreting cytokines and ‘alarmins’
that regulate the adaptive immune system. Recent evi-
dence suggests that a type 2-biased response of ECs to
allergens probably contributes to the inception of sev-
eral allergic disorders including asthma and atopic der-
matitis [17].

Interleukin 25. Interleukin (IL)-25 is a distinct member
of the IL-17 cytokine family and is also named IL-17E.
Discovered in 2001[18] in highly polarized Th2 cells
[19], this cytokine is constitutively expressed by several
cell types [20] including ECs [21–23], IgE-activated
mast cells [24], alveolar macrophages [25], eosinophils
[26, 27], basophils [27], as well as endothelial cells [28]

and microglial cells [29]. IL-25 is known to play a role
in several inflammatory diseases such as asthma, pul-
monary fibrosis and atopic dermatitis [30, 31] and is
released upon exposure to proteases such as papain and
trypsin, or more importantly in the context of allergy,
to allergen proteases present in house dust mite (HDM)
extract [32, 33]. Following binding to its receptor (IL-
17RB/RA), it promotes Th2 responses and experimental
asthma in mice [34]. In addition, targeting IL-25 in
experimental asthma reduces Th2 cytokine production
as well as airway eosinophilia and hyperresponsiveness
[35, 36]. In human asthma, increased IL-25 and IL-25R
mRNA levels are observed in bronchial biopsies [27],
and patients with asthma expressing higher levels of
epithelial IL-25 display a larger benefit (in terms of
lung function) upon treatment with inhaled corticos-
teroids [37]. These findings underline the clinical rele-
vance of IL-25 as a new therapeutic target in asthma
[38], but the benefits of antagonizing IL-17RB/RA or
directly inhibiting IL-25 require further demonstration.

Thymic stromal lymphopoietin. Thymic stromal lym-
phopoietin (TSLP) is an IL-7-like cytokine, produced by
a large variety of cells including ECs [39] and airway
smooth muscle cells [40]. TSLP expression is stimulated
in primary human airway epithelial and smooth muscle
cells by inflammatory mediators such as IL-1b and

Table 1. Mechanisms of allergen- and viral induced epithelial barrier

impairment

Molecule

family Family member Mechanism References

House dust

mite

Der p 1 Cleaves occluding and

claudin in vitro

[258–261]

Pollens Olea europaea Direct and indirect

peptidase activity

[262]

Cupressus

sempervirens

Pinus sylvestris

Viruses Rhinovirus Oxidant-dependent

pathway

[263–265]

Influenza Loss of tight junction

protein claudin-4

(alveoli)

[266]

Respiratory

syncytial virus

Activation of protein

kinase D

[267]

Cocksackie Binding to occludin [268]

Cigarette

smoke

Various pathways,

including:

[269]

- human epidermal

receptor 2

[270]

- hyaluronan [271]

- aquaporin-5 [272]

- p-120-catenin [273]

- MUC1 glycosylation [274]

Mechanisms of allergen-, virus- and cigarette smoke-induced increase

in epithelial permeability. AJC, apical junctional complex.
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TNF-a, in an NF-jB-dependent manner [41, 42], by
RSV [43], by cigarette smoke [44], by proteases [45], or
by mechanical injury [46].

In 2002, TSLP has been demonstrated as inducing the
production of Th2-attracting chemokines CCL17 and
CCL22, and priming Th2-cell development by activated
dendritic cells (DCs) [47], opening a new avenue in
allergy pathophysiology. In asthma, expression of TSLP
is increased [48] and correlates with expression of Th2-
type chemokines [49]. TSLP levels are also increased in
exhaled breath condensates of asthmatics [50], with
increased production by their airway ECs in response to
virus-derived double-strand ribonucleic acid [51, 52]. In
addition, polymorphic variants of TSLP have been
reported in a genomewide study of European adults
with asthma [53].

In lipopolysaccharide (LPS)-primed mice, DC-derived
TSLP promoted Th2 polarization following allergen sen-
sitization [54]. Conversely, intratracheal instillation of
anti-TSLP receptor antibody in asthmatic mice prevents
Th2-mediated airway inflammation [55]. In ovalbumin-
induced experimental asthma, TSLP is mandatory for
allergic airway inflammation to develop as TSLP recep-
tor-deficient mice show considerably attenuated disease
[56], while it appeared dispensable for recall responses
in established disease [57]. DCs are a first cellular target
of TSLP and are primed to instruct naive T cells for Th2
polarization, while down-regulating IFN-c and IL-10
[58]. Natural killer (NK) T cells, which seem to crucially
regulate the development of allergic asthma through
the production of IL-4 and IL-13 [59], also express the
TSLP receptor. Incidentally, in ovalbumin-sensitized
mice, TSLP overexpression induces an NK T cell-driven
increase in airway hyperresponsiveness [60]. TSLP may
also inhibit regulatory T cells (Tregs), leading to aber-
rant immune responses [61, 62].

The central role of TSLP in allergy has led to clinical
programmes in allergy, providing promising results in a
phase-II trial in allergic asthma with intravenous anti-
TSLP monoclonal antibody [63]. The recently identified
short variant of TSLP [64] and its relative expression to
the full-length native form should, however, be taken
into account for future targeting of this cytokine.

Granulocyte/macrophage colony-stimulating fac-
tor. Granulocyte/macrophage colony-stimulating factor
(GM-CSF) is a pleiotropic cytokine that promotes the
differentiation and proliferation of granulocyte and
macrophage progenitor hematopoietic cells. It also
regulates the survival of neutrophils, eosinophils,
macrophages and DCs [65]. Since 1990, bronchial ECs
are known to abundantly produce GM-CSF [66, 67],
which is further enhanced by HDM allergen [68]. Over-
expression of GM-CSF in mice induces spontaneous
Th2 sensitization to ovalbumin [69] independently of

IL-4[70], while GM-CSF�/� mice show a clear lack of
airway eosinophils [71], antibody-driven GM-CSF neu-
tralization preventing their sensitization to HDM [68].
Despite the ubiquitous distribution of GM-CSF, an anti-
GM-CSF monoclonal antibody has been tested recently
in a phase-II trial [72], to evaluate its efficacy and
safety in patients with inadequately controlled asthma,
but no improvement in lung function was observed in
this study.

Alarmins. ECs express pattern-recognition receptors
that discriminate the type of foreign agents, and fol-
lowing activation may release chemokines that recruit
DCs, basophils and type 2 immature lymphoid cells
(ILC2s) as well as damage-associated molecular pat-
terns that promote Th2-cell mediated immunity [17].
Pathogens are recognized through pathogen-associated
molecular patterns (PAMPs), while host cells may also
activate this system following their activation or dam-
age [73]. Given their intracellular source, these latter
molecules first named ‘endokines’ are better known as
‘alarmins’ or ‘damage-associated molecular patterns’
(DAMPs). The alarmins high-mobility group box 1
(HMGB1) [74], S100 family proteins, IL-33 and IL-1a
are located in the nucleus but can be released during
non-programmed cell death. Their release in the subep-
ithelial space following cell injury has been extensively
studied these last years, in particular with regard to
allergic diseases.

Interleukin 33. IL-33 is a member of the IL-1 cytokine
family, discovered as a potent driver of Th2 polariza-
tion [75], inducing the production of IL-4, IL-5 and IL-
13. Its involvement in asthma [76, 77], chronic inflam-
mation of the gut [78] or rheumatoid arthritis [79] is
well established, and increased levels of IL-33 are
reported in exhaled breath condensates of asthmatics
[50]. In addition, IL-33 has been proposed as an inflam-
matory marker of severe and refractory asthma, as its
expression in bronchial biopsies positively correlates
with asthma severity [80]. Furthermore, recent genetic
studies in asthma identified single-nucleotide polymor-
phisms in the IL-33 and IL-33 receptor genes associated
with asthma [53]. These results emphasize the link
between allergic diseases and IL-33. IL-33 is constitu-
tively and continuously expressed in the nucleus of ECs
when they are not proliferating and displaying tight
junctions, achieving inhibition of cell proliferation.
Unlike during apoptosis where IL-33 is cleaved by the
executor caspase-3 and caspase-7[81], IL-33 released by
necrotic cells remains active and induces immune
responses through binding to its IL-33 receptor, also
known as ST2 receptor (ST2L). ST2L is expressed in
many cell types [82] and signals through NFjB and
MAPK pathways in target cells such as ILCs [83, 84],
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mast cells [85, 86], macrophages [87], basophils [88]
and DCs [89, 90]. The IL-33/ST2L axis is a promising
target in allergic asthma, but its pleiotropic activities in
several tissues and organs could represent a drawback
of its therapeutic neutralization [33].

High-mobility group Box 1. Previously named ampho-
terin, HMGB1 is a ligand of the receptor for advanced
glycation end products (RAGE) [91] and acts as an
inflammatory mediator in several disorders. Two con-
comitant studies revealed increased sputum levels of
HMGB1 in asthma [92, 93], which were inversely corre-
lated with airway obstruction. These findings suggested
its interest as putative biomarker of asthma severity
[94]. In ovalbumin-induced experimental asthma,
HMGB1 expression is increased, and addition of exoge-
nous HMGB1 increased Th2 cells and levels of IL-4, IL-
5, IL-6, IL-8 and IL-17 [95]. In addition, the blockade of
HMGB1 binding to Gsto1 promoter region by gly-
cyrrhizin in LPS/GalN-triggered liver-injured mice pre-
vented apoptosis and inflammatory infiltrates [96]. In
HDM-sensitized RAGE�/� mice, blockade of the HMGB1
downstream pathway strongly reduced Th2 responses
[97]. These data strongly suggest the crucial role of
HMGB1 in asthma and pave the way for therapeutic
research.

Interleukin 1a. Also known as hematopoietin 1, IL-1a
was described in 1985, when IL-1 was discovered to
consist of two distinct proteins [98]. Its proinflamma-
tory and profibrotic roles in the lung are well estab-
lished [99], as well as its role in autoimmune diseases
like rheumatoid arthritis [100, 101] or psoriasis [102].
In the past years, anti-IL-1 therapy has been a major
topic of anti-inflammatory research, leading to the
therapeutic anti-IL-1 receptor anakinra, the soluble
decoy receptor rilonacept and anti-IL-1b antibody
canakinumab [103]. A neutralizing anti-IL-1a antibody
is also tested in clinical trial, with promising results
[104]. The role of IL-1a in allergy remains, however,
elusive, partly related to its ubiquitous location and
various functions. In the gut, IL-1a has recently been
identified as a key epithelial product of necrosis, ampli-
fying and perpetuating inflammation, and is suspected
to play an important role during inflammatory bowel
diseases (IBDs, such as Crohn’s disease and ulcerative
colitis) [105]. In lung-transplanted patients, infection by
Pseudomonas aeruginosa induces IL-1a that positively
correlates with IL-8 levels and neutrophil counts, and is
thought to contribute to chronic lung allograft dysfunc-
tion in bronchiolitis obliterans syndrome [106]. IL1R-
lacking mice display a strongly reduced capacity to
mount Th2 responses to HDM [68]. Interestingly,
administration of mesenchymal stromal cells in HDM-
sensitized mice reduced IL-1a and HMGB1 release in an

IL-1 receptor antagonist-dependent manner, suggesting
that IL-1a is a relevant target in airway allergy [107].
Furthermore, both IL-1a and IL-1b can promote tumour
invasion and metastasis through inflammatory pro-
cesses [108, 109], as recently reviewed [110], and anti-
IL1a antibodies also represent potential new therapeu-
tics in non-small cell lung cancer [111].

Immunoglobulin A as frontline mucosal antibodies

IgA is the predominant Ig in mucosal secretions [112],
where it contributes to the frontline immune defence to
inhaled and ingested antigens.

Although IgA also lies in the serum, where it pre-
dominates as monomers (5 : 1 monomeric : dimeric
ratio), its main function relates to its mucosal localiza-
tion where it achieves ‘immune exclusion’ by binding
to noxious antigens and preventing adherence of
microorganisms to the surface epithelium. In the air-
ways, IgA also improves the viscoelastic properties of
mucosal secretions [113]. In contrast to serum, mucosal
IgA is mostly found as dimers which consist of two
160-kDa monomers of IgA covalently linked to a 15-
kDa joining polypeptide (J chain)[114].

Organization of the mucosa-associated lymphoid tissues

Mucosal-associated lymphoid tissues. The mucosal
immune system integrates two functionally distinct tis-
sue compartments: inductive sites, where antigens from
mucosal surfaces activate antigen-presenting cells
(APCs), and subsequently naive T and B lymphocytes;
and effector sites, where memory and effector B cells
undergo terminal differentiation to plasma cells.

The gut-associated lymphoid tissues (GALTs) com-
prise the Waldeyer’s ring, the Peyer’s patches, the
appendix and isolated lymphoid follicles [115]. In con-
trast, in human lung, bronchial-associated lymphoid
tissues (BALT) are not constitutively present [116,
117], but develop following heavy and/or persistent/re-
current antigenic stimulation [118] as referred to as
inducible BALT (iBALT) and considered as tertiary
lymphoid organs. Those specialized gastrointestinal
and lung structures enable local and professional anti-
gen sampling and induction of immunity. ECs and
APCs are in first line to discriminate between patho-
gens and harmless antigens (e.g. allergens) according
to the strength of the signals first provided through
two main types of pattern-recognition receptors [119]
– firstly Toll-like receptors (TLRs) that may be located
at the cell surface or intracellularly, depending on
their subtype, and secondly (exclusively intracellular)
Nod-like receptors (NLRs) [120, 121] – and to microen-
vironmental signals reflecting the context of the
insult.
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Toll-like receptors in asthma. TLRs fulfil various func-
tions and activate nuclear factor-kappa B (NF-jB),
mitogen-activated protein kinases (MAPK) and inter-
feron regulatory factors (IRF) signalling pathways [122].
They are involved in the maturation of DCs and regu-
late T cell differentiation into Th1, Th2 or regulatory T
cells (Tregs). Of note, TLR5- and TLR2-activated DCs
promote the differentiation into Th2 cells or Tregs by
producing IL-10[122, 123], while TLR4 activation by
LPS, among others, is known to recruit granulocyte,
that is neutrophils, eosinophils and basophils/mast cells
[122, 124].

As asthmatic inflammation is classically underlined
by activation of CD4+ Th2 cells, which produce IL-4,
IL-5 and IL13 [125–127], several studies reported on
the implication of TLRs in asthma. In Europe, a Ger-
man case–control study in children identified gain-of-
function single-nucleotide polymorphisms (SNPs) in the
genes encoding TLR1 and TLR6 that showed protective
effects in allergic asthma [128], while a Danish study
established associations between asthma and SNPs in
the TLR7 and TLR8 genes [129]. Moreover, the function
of TLR7 was decreased in adolescents with asthma in
an Australian prospective cohort study [130]. A recent
meta-analysis also suggested that SNPs on TLR2, TLR4
and TLR9 genes might contribute to the development
of asthma [131]. Finally, TLRs are also suspected to
have immune modulating properties that can redirect
allergic Th2 responses towards a more balanced Th
response, notably by promoting Th1 cell activation
[132]. Interestingly, several natural TLR inhibitors exist,
including A20/TNFAIP3, Tollip, SOCS-1 and IRAK-M,
and epithelial activation through TLR could contribute
to the protective effect of farm dust exposure on
asthma inception in children via the induction of A20/
TNFAIP3 production [133]. In contrast, these mecha-
nisms are deregulated during established allergic air-
way disease, and impaired TLR signalling could impair
antiviral [134, 135] and antibacterial defence [136].
These data underscore the need for further research on
TLR-driven immunomodulation in the lung, while
promising results have been observed in asthma fol-
lowing TLR9 activation both in mice and early clinical
trials [137–140].

IgA production in MALT. Antigen-specific IgA antibod-
ies classically derive, like IgG, from conventional B
cells (also called B2 cells) that have encountered their
cognate antigen and have undergone somatic hypermu-
tation. Conversely, other B cells, namely B1 cells, can
secrete the so-called natural IgA or IgM antibodies,
which are primarily encoded in the germ line with
spontaneous antigenic specificities to naturally occur-
ring epitopes at the surface of microorganisms such as
phosphorylcholine, lysophosphatidylcholine or LPS

[141]. Thus, B1 cells belong to the innate family of B
cells, also including marginal zone B cells [142]. In
mice, they are subdivided in B1a and B1b subsets: B1a
cells express CD5, while B1b cells do not, whereas
homologous subsets have not yet been described in
man, possibly because of the extended expression of
CD5 in various human B cells [143]. However, recent
research identified two subsets of B1-like cells in
human that express CD43 and share important func-
tional features with murine B1 cells [144]. B1 cells dif-
fer from B2 cells in several regards, including location,
surface markers or growth properties [145–147], as
recently elegantly reviewed [148] and summarized in
Table 2. B1 cells express high levels of CXCR5 and are
the predominant B cell subtype in the peritoneal and
pleural cavities [142], where they migrate in response
to CXCL13 [149], but can also be found in the gut and
airway mucosae.

Briefly, na€ıve B cells are primed in extrafollicular
areas of BALT or GALT by CD4+CD40L+ T cells, which
are activated by interdigitating APCs that have pro-
cessed a luminal antigen [150]. These primed
IgD+IgM+CD38+ B cells produce an unmutated IgM that
can bind the antigen with a low affinity, generating
soluble immune complexes that maintain B cell mem-
ory. Mature resting B cells initially express IgD and
IgM, but may undergo isotype switching to IgG, IgA or
IgE when stimulated by an antigen [151] in the effector
sites (lamina propria of airway mucosa). Classically,
systemically administered Th1-type antigens trigger
switching to murine IgG2a and Ig2b or human IgG1
and IgG3, whereas Th2 antigens promote switching to
murine IgG1 and IgE, or human IgG4 and IgE [151–
153]. In contrast, most of mucosal immune responses
lead to switching to IgA [154] as described hereunder.

Table 2. Identification of B1 and B2 cells in the mouse, according to

main phenotypic and functional features

B1 cells B2 cells

Surface IgA expression High Low

Surface B220 expression Low High

Surface IgD expression Low High

CD23 expression No High

Main location Peritoneal/pleural

cavities

Lymphoid

follicles

Mac-1 expression Intermediate

CD5 expression Intermediate in B1a

subtype

VH repertoire Phosphatidylcholine,

Phosphorylcholine, Ig

(rheumatoid factor)

High-affinity

Abs to various

antigenic

proteins

Identification of B1 and B2 cells in the mouse, according to main

phenotypic and functional features. Abs, antibodies.
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Interestingly, mucosal B cells are able to switch to all
Ig isotypes, according to the context.

Mucosal IgA switching and its regulation

Unlike the mouse, human IgA comprises two distinct
subclasses, namely IgA1 and IgA2. Their constant heavy
chains are encoded by distinct genes on chromosome
14 (Ca1 and Ca2) [155]. IgA1 predominates in serum (as
monomers), whereas IgA2 is enriched in external secre-
tions (mainly as dimers), representing up to 50% of
total IgA [156, 157]. IgA2 is relatively resistant to enzy-
matic degradation because of a 13-amino acid deletion
in the hinge region, preventing the bacterial protease
recognition of IgA2 [158]. Considering that bacterial
peptides bypassing the epithelial barrier may act as
allergens, the relative protease resistance of IgA2 may
represent an important functional barrier at mucosal
surfaces.

In activated B cells, isotype switching (i.e. class
switch recombination, CSR) is initiated by activation-
induced cytidine deaminase (AID) [159]. Specific DNA
regions located upstream of the genes encoding the Ig
heavy chain C, referred to as switch regions, undergo
DNA double-strand breaks, further processed by DNA
repair leading to the recombination of these regions
[160]. IgA, IgG or IgE can thus be produced as the
expressed C region switches from Cl to Ca, Cc or Ce,
respectively [161], while previously rearranged Ig heavy
chain variable domain confers the antigenic specificity.
CSR is regulated, at least partly, by cytokines and B cell
activators. Thus, IL-4 and IL-13, as prototypic Th2
cytokines, induce IgE CSR [162–164]. In the Peyer’s
patches and in the germinal centres of mesenteric
lymph nodes, IL-21[165] and TGF-b produced by follic-
ular T helper cells (Tfh) generate high-affinity IgA-pro-
ducing plasma cells, supporting the existence of a T
cell-dependent pathway for IgA CSR [166]. A T cell-
independent pathway of IgA CSR also exists, at least in
the gut, and generates polyreactive IgA with lower
affinity [167]. More recently, retinoic acid has been
shown to induce selective IgA switching in human B
cells [168]. In addition, DCs can induce both T-depen-
dent and T-independent IgA CSR through the release of
IgA-inducing factors. Indeed, TGF-b1 has been demon-
strated, both in human and murine B cells, to be neces-
sary for the IgA switching [169, 170] while the release
by DCs of APRIL (A Proliferation Inducing Ligand) and
BAFF (B cell Activating Factor belonging to the TNF
Family) has been identified as inducing IgA2 and IgA1

switching, respectively [171, 172]. Although IgA CSR
occurs in the respiratory mucosa [173], such as follow-
ing influenza infection [174], the role of lung DCs in
the regulation of IgA remains unclear. Recent data,
based on the recent evidence of lung microbiome [175],

demonstrate that the airway microbiome regulates the
ability of lung DCs to induce IgA CSR via the produc-
tion of TGF-b [176].

The role of the lung and gut microbiota in allergy

Both respiratory and gastrointestinal tracts include
complex communities of microorganisms, as referred to
as microbiota or microbiome. In the gut, the bacterial
load reaches 1012/cm³, continuously threatening the
delicate equilibrium for the mucosal integrity. In con-
trast, the lung has been thought sterile for long, as
exemplified by the National Institutes of Health’s initial
Human Microbiome Project which did not include it as
a site of investigation [177]. However, the recent identi-
fication of some bacterial communities in the lungs of
healthy never smokers [175, 178] opened a new avenue
of research in the lung.

In the gut, bacteria that penetrate the epithelial layer
are usually phagocytosed by lamina propria macro-
phages [179], whereas invading microbes may trigger
specific immune responses. Thus, after bacteria uptake
by DCs and transport to inductive lymphoid sites, DCs
promote activation of IgA responses at effector sites
both in local and distant gut mucosal sites in order to
achieve immunity or tolerance [180, 181]. In a very
recent study in children, impaired IgA responses to the
gut microbiota are correlated with the development of
allergic diseases, including allergic asthma. These
results highlight on the one hand the crucial role of
IgA immunity in the prevention of allergy, and on the
other hand, the strong interaction between airway and
gut mucosae [182]. In the lung, changes within the
microbiota (e.g. resulting from antibiotic use) have been
linked to allergic airway diseases in several studies
[183–185], supporting the ‘microflora hypothesis’ that
suggests correlations between allergic airway disease,
antibiotic use early in life, altered fecal microbiota and
dietary changes [186]. From another perspective,
absence of conventional microbiota in germ-free mice
correlated with exquisite susceptibility to inflammatory
bowel diseases and asthma [187]. Recently, Ruane et al.
[176] showed that microbial stimuli acting on lung DCs
through MyD88-dependent TLRs induce IgA class
switching via the production of TGF-b, unlike lung
macrophages. The study of the other factors that endow
certain bacteria with the potential to induce IgA switch-
ing could reveal a fascinating matter of research.

Taken together, those results evidence the intercon-
nection of lung- and gut-associated lymphoid tissues,
as referred to the ‘lung-gut crosstalk’[188]. Thus, mur-
ine lung DCs up-regulate the expression of gut-homing
molecules on T cells, such as integrin a4b7 and CCR9,
allowing them to migrate to the gut and induce protec-
tion against intestinal pathogens [189]. Oral
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administration of food antigens to neonatal mice pro-
vides a protection against the development of respira-
tory allergic diseases [190]. Finally, reovirus-primed T
cells of the murine intestine confer protection to airway
infection by this virus [191]. These findings further
emphasize the existence of crossed mucosal responses
and underline the importance of the global immune
mucosal system, notably in allergy.

Transepithelial IgA transcytosis

Once secreted by mucosal plasma cells in the lamina
propria, dimeric IgA (or pentameric IgM) may be trans-
ported into mucosal secretions following its transepithe-
lial routing, which is mediated by the polymeric Ig
receptor (pIgR). After IgA binding to the pIgR, which
occurs owing to the expression of the J chain by these
Igs, the cellular membrane invaginates into clathrin-
coated vesicles that cross ECs via its intracellular
membrane system and, ultimately, fuse with the apical
membrane. When the pIgR reaches the apical surface of
ECs, the complex with IgA (or IgM) is exocytosed after
local endoproteolytic cleavage of the receptor. This
cleavage releases IgA and the extracellular part of the
pIgR, called secretory component (SC), which corre-
sponds to the five extracellular Ig-like domains of the
pIgR, and remains non-covalently bound to IgA. Thus,
secretory (S) IgA is composed by the two monomers of
IgA, the J chain and SC. Transcytosis of unbound pIgR
also occurs, releasing free SC [192] that can be found
in most exocrine secretions. The secretory form of IgA
(and IgM) probably offers advantages (as compared to
non-secretory Igs) in terms of greater stability and
resistance to bacterial proteinases, as well as avidity for
binding microorganisms [193].

IgA-mediated functions at mucosal surfaces

Immune exclusion. The main defence function of S-IgA
is probably the binding of soluble or particulate anti-
gens, to perform immune exclusion. Identified more
than forty years ago [194], immune exclusion comprises
a succession of events mediated by Igs such as
agglutination, entrapment in mucus and clearance via
peristalsis in the gut [195], which allows clearance of
antigens before they can reach and invade tissues.
Agglutination consists of the formation of macroscopic
clumps of pathogens through antibody-mediated cross-
linking, via polyvalent surface antigens. To which
extent it does affect the bacterial growth or viral repli-
cation remains, however, unclear, with opposing results
in some studies [196–198]. It has been suggested that
agglutination may have various effects on pathogen
functions, depending on the epitope recognized by the
agglutinating antibody [199]. Mucus entrapment of

pathogens by IgA has been demonstrated in both air-
way and gut mucosae [200, 201]. This entrapment is
much greater in the presence of SC, as it associates with
mucus through its oligosaccharide side chains [202,
203], further underscoring the functional superiority of
S-IgA on monomeric IgA. Immune exclusion prevents
the antigenic overexposure of the adaptive mucosal
immune system and consequently restricts immune
responses to selected antigens invading a mucosal sur-
face. Individuals with selective IgA deficiency present
with a higher incidence of allergic diseases [204, 205],
probably at least partly because of the loss of this
mechanism, illustrating the importance of IgA immu-
nity to allergens.

Blockade of microbial adherence, selection of micro-
biota. S-IgA is also recognized for long as blocking
toxins and pathogens from adhering to the mucosal
epithelium [206–209], providing a protection against
numerous agents such as cholera toxin or reovirus. S-
IgA has been shown to block pathogen adherence by
direct recognition of receptor-binding domains; of note,
the recognition by specific S-IgA of the r1 protein of
reovirus, an adhesin fibre that promotes viral attach-
ment to ECs, directly interferes with epithelial recogni-
tion and attachment [210]. More recently, it has also
been shown in the gut that IgA controls the composition
of the microbiome [211], which seems also the case in
the lung as suggested in ageing mice with pIgR deletion
[212].

Regulation of leucocytes. IgA is known to activate
human eosinophils [213], through binding to the Fca
receptor (FcaRI, CD89)[214] or to an SC receptor [215]
and resulting in the release of eosinophil cationic pro-
tein, eosinophil peroxidase, as well as IL-4 and IL-5. In
addition, a correlation between specific IgA antibody
levels and eosinophil numbers in the nasal mucosa
from patients with allergic rhinitis supports this recruit-
ment of eosinophils by allergen-specific IgA [216]
in vivo, while soluble S-IgA is also thought to enhance
eosinophil survival [217]. Degranulation of eosinophils
occurs preferentially with S-IgA, but whether this
relates to the presence of a C-lectin-type SC receptor is
not elucidated, although free SC being also able to acti-
vate eosinophils [218]. A recent study confirmed that
immune complexes of antigen-specific IgA (and IgG)
may activate eosinophils, highlighting the relation
between IgA responses and eosinophil activation as a
key feature in several allergic diseases [219]. A recent
transcriptomic study of eosinophils from patients with
eosinophilic diseases (e.g. eosinophilic asthma, parasito-
sis, pulmonary aspergillosis and hypereosinophilic skin
diseases) showed a down-regulation of transcripts
involved in antigen presentation and up-regulation of
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genes involved in response to non-specific stimulation,
wounding and homeostasis maintenance [220], while it
did not identify mucosal- or disease-specific signatures.

In addition to eosinophils, FcaRI is also expressed by
other myeloid leucocytes, including neutrophils, mono-
cytes, macrophages and DCs. The latter also express a
C-type lectin called DC-SIGN/SIGNR1 (for dendritic
cell’s specific ICAM-3 grabbing non-integrin receptor 1)
that binds both S-IgA and allergens such as HDM [221].
The ligation of FcaRI on DCs and myeloid cells could
promote several protective pathways, including clear-
ance of microorganisms that cross the epithelial barrier
[222] and induction of T cell suppressive mechanisms
through DLL4/Notch pathway [223] while ligation by
S-IgA to DC-SIGN/SIGNR1 favours the development of
IL-10-secreting tolerogenic DCs upon exposure to TLR
agonists such as LPS, zymosan or CpG1826 [224]. These
IgA-induced tolerogenic DCs promote, in turn, the
expansion of regulatory T cells (Tregs), underlying a
potential role for IgA in the immune homeostasis
against autoimmunity.

The complex involvement of IgA in mucosal immunity
is exemplified in coeliac disease, where immunity con-
tributes both to tolerance and autoimmunity. On the one
hand, IgA is a major auto-antibody as anti-endomysial
and anti-transglutaminase IgA antibodies are found in
most patients with coeliac disease [225] and serve as
important diagnostic tools. In addition, anti-gliadin IgA
antibodies represent another biomarker of the disease.
On the other hand, selective IgA deficiency which repre-
sent the most common primitive immunodeficiency
world-wide (prevalence 0.12–0.33%) [226] is associated
with coeliac disease [227–229] with a reported preva-
lence increased by 10–20 fold (2.6%) in patients with
coeliac disease [227]. Mechanisms underlying this obser-
vation remain unclear, but could involve defects in IgA-
mediated immune exclusion of food allergens or for
induction of tolerogenic DCs, as recently suggested
[230]. In contrast, a recent study of the intestinal mucosa
from patients with coeliac disease without IgA deficiency
showed increased DC and Treg numbers [231].

The controversial role of specific IgA in allergy

The gastrointestinal tract is repeatedly exposed to diet-
ary antigens, against which it achieves a form of oral
tolerance [232]. Whereas IgG and IgA antibodies
against dietary antigens is part of the normal immune
response of the gut, in the PASTURE birth cohort [233],
the levels of specific IgA and IgG to wheat gliadin and
b-lactoglobulin in 459 1-year-old children were predic-
tive of IgE sensitization at the age of 6. In addition,
early introduction of formula milk was associated with
increased b-lactoglobulin-specific IgA levels [234]. In
contrast, while the effect of breast milk on barrier

maturation remains controversial [235–237], the pres-
ence of soluble S-IgA in milk has been associated with
a reduced risk of atopic dermatitis [238]. A beneficial
role of specific, secretory IgA responses was also sug-
gested in paediatric studies [239–241].

In allergic rhinitis, IgA increases in a biphasic man-
ner in the nasal mucosa after allergen challenge [242],
while a specific IgA response has been reported in the
nasal and bronchial mucosa from patients with allergic
rhinitis and/or atopic asthma sensitized to HDM [243],
grass [244], ragweed [245] or birch pollen [246]. As
opposed to the results of the PASTURE cohort, several
studies reported that the production of allergen-specific
IgA antibodies is associated with tolerance to allergens.
Evidence rather supporting a protective role for IgA in
allergy accumulates, as IgA deficiency represents a risk
factor for allergy [247]. Interestingly, treatment of mice
with the cholera toxin B, a mucosal adjuvant, sup-
pressed the development of experimental asthma to
ovalbumin and this was associated with an increased
IgA response. The benefit was transferable to other mice
by B (but not T) lymphocytes and was not observed in
pIgR�/� mice, suggesting the importance of S-IgA in
mucosal tolerance in this model [248]. In contrast, in
models of hypersensitivity to self-antigens, the associ-
ated IgA response appeared dispensable to mount oral
tolerance [249].

In a recent study, production of a-1,3-glucan-specific
IgA in neonatal mice prevented the development of
cockroach allergy [250], a feature potentially relevant
to severe asthma [251]. HDM-specific IgA2 was also
associated with protection against eczema in allergic
patients [252], while low levels of casein-specific IgA
were found in children with food protein-induced aller-
gic enterocolitis [241]. In addition, spontaneous toler-
ance to bee venom or cow’s milk after prolonged
exposure was associated with allergen-specific IgA
[253, 254], and intranasal administration of ragweed-
specific IgA protected against allergic inflammation in
sensitized mice [255]. We have seen increases in serum
allergen-specific IgA2 following allergen immunother-
apy [256], correlating with nasal mucosal expression of
TGF-b, a key cytokine for mucosal tolerance and IgA
synthesis [257].

The specific role of IgA and its subclasses, as well as
the regulation of its production and transport in these
allergic diseases, at the chronic stage, remains, however,
poorly known.

Conclusion and perspectives

Mucosal immunity is influenced by multiple and com-
plex components and aims normally to provide our
mucosal surfaces with responses to antigens and
microbes that are reaching these tissues of the body.
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The epithelial barrier is critical to limit the global
amount of antigens and microbes that are able to trigger
the immune system, and includes mucociliary clearance,
apical junctional complexes and secretion of antimicro-
bial peptides and secretory IgA which allows immune
exclusion. Deregulation of one or several of these mech-
anisms may lead to increased epithelial permeability to
antigens and could subsequently promote allergic or
infectious disorders in the gut or the lung.

More specifically, the IgA system contributes to muco-
sal immunity in target organs of allergic diseases, such as
airway and gut, by providing a frontline barrier for the
exclusion of allergens and pathogens. IgA fits perfectly
with this role, owing to its non- or poorly pro-inflamma-
tory features. Whether IgA, which is dispensable to

develop tolerance to self-antigens, is required to mount
tolerance to allergens remains unclear. In human allergic
diseases, IgA production has been associated with spon-
taneous remission of food allergy to cow’s milk or ana-
phylaxis to bee venom, as well as with tolerance to grass
pollen following allergen-specific immunotherapy, while
IgA deficiency represents a risk factor for allergy. On the
other hand, secretory IgA has the potential to activate
eosinophils, and a specific IgA response is part of the
autoimmune reactivity in coeliac disease. In addition,
accumulating evidence suggests that IgA contributes to
regulate the mucosal microbiome, probably both in the
gut and lungs, highlighting another regulatory pathway
involving IgA (Fig. 1). Further studies are clearly needed
to further decipher the complex involvement of IgA in
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Fig. 1. Multifaceted functions of IgA in mucosa. After transcytosis through pIgR-driven routing, S-IgA performs its endoluminal duties (boxed

numbers) such as immune exclusion, regulation of microbiota and neutralization of antigens plugged in mucus, while submucosal IgA may bind

to various types of leucocytes (encircled numbers), leading to various outcomes (eosinophilic inflammation, adaptive immunity or immunomodu-

lation) according to the cell type and microenvironmental signals including cytokines, costimulatory and other host factors. For example, IgA

may regulate dendritic cells (DCs), which can either promote adaptive immunity or tolerance in an autocrine IL-10-dependent manner.
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mucosal immunity to allergens, which should integrate
the interplay between allergenic, microbial and host
components.
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